InvokeAI/invokeai/app/invocations/compel.py

520 lines
20 KiB
Python

from typing import Iterator, List, Optional, Tuple, Union, cast
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIComponent
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ConditioningFieldData,
ExtraConditioningInfo,
SDXLConditioningInfo,
)
from invokeai.backend.util.devices import torch_dtype
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .model import CLIPField
# unconditioned: Optional[torch.Tensor]
# class ConditioningAlgo(str, Enum):
# Compose = "compose"
# ComposeEx = "compose_ex"
# PerpNeg = "perp_neg"
@invocation(
"compel",
title="Prompt",
tags=["prompt", "compel"],
category="conditioning",
version="1.1.1",
)
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
prompt: str = InputField(
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
clip: CLIPField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.models.load(self.clip.tokenizer)
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(self.clip.text_encoder)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
with lora_info as model:
yield (model, lora.weight)
del lora_info
return
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
with text_encoder_info as text_encoder:
with (
ModelPatcher.apply_ti(tokenizer_model, text_encoder, ti_list) as (
tokenizer,
ti_manager,
),
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
):
assert isinstance(text_encoder, CLIPTextModel)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False,
)
conjunction = Compel.parse_prompt_string(self.prompt)
if context.config.get().log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
ec = ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
cross_attention_control_args=options.get("cross_attention_control", None),
)
c = c.detach().to("cpu")
conditioning_data = ConditioningFieldData(
conditionings=[
BasicConditioningInfo(
embeds=c,
extra_conditioning=ec,
)
]
)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput.build(conditioning_name)
class SDXLPromptInvocationBase:
"""Prompt processor for SDXL models."""
def run_clip_compel(
self,
context: InvocationContext,
clip_field: CLIPField,
prompt: str,
get_pooled: bool,
lora_prefix: str,
zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
tokenizer_info = context.models.load(clip_field.tokenizer)
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(clip_field.text_encoder)
assert isinstance(text_encoder_info.model, (CLIPTextModel, CLIPTextModelWithProjection))
# return zero on empty
if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.model
assert isinstance(cpu_text_encoder, torch.nn.Module)
c = torch.zeros(
(
1,
cpu_text_encoder.config.max_position_embeddings,
cpu_text_encoder.config.hidden_size,
),
dtype=cpu_text_encoder.dtype,
)
if get_pooled:
c_pooled = torch.zeros(
(1, cpu_text_encoder.config.hidden_size),
dtype=c.dtype,
)
else:
c_pooled = None
return c, c_pooled, None
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in clip_field.loras:
lora_info = context.models.load(lora.lora)
lora_model = lora_info.model
assert isinstance(lora_model, LoRAModelRaw)
yield (lora_model, lora.weight)
del lora_info
return
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
with text_encoder_info as text_encoder:
with (
ModelPatcher.apply_ti(tokenizer_model, text_encoder, ti_list) as (
tokenizer,
ti_manager,
),
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),
):
assert isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
text_encoder = cast(CLIPTextModel, text_encoder)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=get_pooled,
)
conjunction = Compel.parse_prompt_string(prompt)
if context.config.get().log_tokenization:
# TODO: better logging for and syntax
log_tokenization_for_conjunction(conjunction, tokenizer)
# TODO: ask for optimizations? to not run text_encoder twice
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
if get_pooled:
c_pooled = compel.conditioning_provider.get_pooled_embeddings([prompt])
else:
c_pooled = None
ec = ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
cross_attention_control_args=options.get("cross_attention_control", None),
)
del tokenizer
del text_encoder
del tokenizer_info
del text_encoder_info
c = c.detach().to("cpu")
if c_pooled is not None:
c_pooled = c_pooled.detach().to("cpu")
return c, c_pooled, ec
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.1.1",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
prompt: str = InputField(
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
style: str = InputField(
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="")
crop_top: int = InputField(default=0, description="")
crop_left: int = InputField(default=0, description="")
target_width: int = InputField(default=1024, description="")
target_height: int = InputField(default=1024, description="")
clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
c1, c1_pooled, ec1 = self.run_clip_compel(
context, self.clip, self.prompt, False, "lora_te1_", zero_on_empty=True
)
if self.style.strip() == "":
c2, c2_pooled, ec2 = self.run_clip_compel(
context, self.clip2, self.prompt, True, "lora_te2_", zero_on_empty=True
)
else:
c2, c2_pooled, ec2 = self.run_clip_compel(
context, self.clip2, self.style, True, "lora_te2_", zero_on_empty=True
)
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
target_size = (self.target_height, self.target_width)
add_time_ids = torch.tensor([original_size + crop_coords + target_size])
# [1, 77, 768], [1, 154, 1280]
if c1.shape[1] < c2.shape[1]:
c1 = torch.cat(
[
c1,
torch.zeros(
(c1.shape[0], c2.shape[1] - c1.shape[1], c1.shape[2]),
device=c1.device,
dtype=c1.dtype,
),
],
dim=1,
)
elif c1.shape[1] > c2.shape[1]:
c2 = torch.cat(
[
c2,
torch.zeros(
(c2.shape[0], c1.shape[1] - c2.shape[1], c2.shape[2]),
device=c2.device,
dtype=c2.dtype,
),
],
dim=1,
)
assert c2_pooled is not None
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
embeds=torch.cat([c1, c2], dim=-1),
pooled_embeds=c2_pooled,
add_time_ids=add_time_ids,
extra_conditioning=ec1,
)
]
)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput.build(conditioning_name)
@invocation(
"sdxl_refiner_compel_prompt",
title="SDXL Refiner Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.1.1",
)
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
style: str = InputField(
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
) # TODO: ?
original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="")
crop_top: int = InputField(default=0, description="")
crop_left: int = InputField(default=0, description="")
aesthetic_score: float = InputField(default=6.0, description=FieldDescriptions.sdxl_aesthetic)
clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
# TODO: if there will appear lora for refiner - write proper prefix
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True, "<NONE>", zero_on_empty=False)
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
assert c2_pooled is not None
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
embeds=c2,
pooled_embeds=c2_pooled,
add_time_ids=add_time_ids,
extra_conditioning=ec2, # or None
)
]
)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput.build(conditioning_name)
@invocation_output("clip_skip_output")
class CLIPSkipInvocationOutput(BaseInvocationOutput):
"""CLIP skip node output"""
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation(
"clip_skip",
title="CLIP Skip",
tags=["clipskip", "clip", "skip"],
category="conditioning",
version="1.1.0",
)
class CLIPSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
skipped_layers: int = InputField(default=0, ge=0, description=FieldDescriptions.skipped_layers)
def invoke(self, context: InvocationContext) -> CLIPSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers
return CLIPSkipInvocationOutput(
clip=self.clip,
)
def get_max_token_count(
tokenizer: CLIPTokenizer,
prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long: bool = False,
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max([get_max_token_count(tokenizer, p, truncate_if_too_long) for p in blend.prompts])
elif type(prompt) is Conjunction:
conjunction: Conjunction = prompt
return sum([get_max_token_count(tokenizer, p, truncate_if_too_long) for p in conjunction.prompts])
else:
return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object(
tokenizer: CLIPTokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long: bool = True
) -> List[str]:
if type(parsed_prompt) is Blend:
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
text_fragments = [
(
x.text
if type(x) is Fragment
else (" ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else str(x))
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens: List[str] = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_conjunction(
c: Conjunction, tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
) -> None:
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
assert display_label_prefix is not None
this_display_label_prefix = display_label_prefix
log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix)
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
) -> None:
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
original_fragments = []
edited_fragments = []
for f in flattened_prompt.children:
if type(f) is CrossAttentionControlSubstitute:
original_fragments += f.original
edited_fragments += f.edited
else:
original_fragments.append(f)
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
def log_tokenization_for_text(
text: str,
tokenizer: CLIPTokenizer,
display_label: Optional[str] = None,
truncate_if_too_long: Optional[bool] = False,
) -> None:
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")