mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
504 lines
26 KiB
Python
504 lines
26 KiB
Python
'''
|
|
ldm.invoke.generator.embiggen descends from ldm.invoke.generator
|
|
and generates with ldm.invoke.generator.img2img
|
|
'''
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from tqdm import trange
|
|
|
|
from ldm.invoke.devices import choose_autocast
|
|
from ldm.invoke.generator.base import Generator
|
|
from ldm.invoke.generator.img2img import Img2Img
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
|
|
|
|
class Embiggen(Generator):
|
|
def __init__(self, model, precision):
|
|
super().__init__(model, precision)
|
|
self.init_latent = None
|
|
|
|
# Replace generate because Embiggen doesn't need/use most of what it does normallly
|
|
def generate(self,prompt,iterations=1,seed=None,
|
|
image_callback=None, step_callback=None,
|
|
**kwargs):
|
|
|
|
scope = choose_autocast(self.precision)
|
|
make_image = self.get_make_image(
|
|
prompt,
|
|
step_callback = step_callback,
|
|
**kwargs
|
|
)
|
|
results = []
|
|
seed = seed if seed else self.new_seed()
|
|
|
|
# Noise will be generated by the Img2Img generator when called
|
|
with scope(self.model.device.type), self.model.ema_scope():
|
|
for n in trange(iterations, desc='Generating'):
|
|
# make_image will call Img2Img which will do the equivalent of get_noise itself
|
|
image = make_image()
|
|
results.append([image, seed])
|
|
if image_callback is not None:
|
|
image_callback(image, seed)
|
|
seed = self.new_seed()
|
|
return results
|
|
|
|
@torch.no_grad()
|
|
def get_make_image(
|
|
self,
|
|
prompt,
|
|
sampler,
|
|
steps,
|
|
cfg_scale,
|
|
ddim_eta,
|
|
conditioning,
|
|
init_img,
|
|
strength,
|
|
width,
|
|
height,
|
|
embiggen,
|
|
embiggen_tiles,
|
|
step_callback=None,
|
|
**kwargs
|
|
):
|
|
"""
|
|
Returns a function returning an image derived from the prompt and multi-stage twice-baked potato layering over the img2img on the initial image
|
|
Return value depends on the seed at the time you call it
|
|
"""
|
|
assert not sampler.uses_inpainting_model(), "--embiggen is not supported by inpainting models"
|
|
|
|
# Construct embiggen arg array, and sanity check arguments
|
|
if embiggen == None: # embiggen can also be called with just embiggen_tiles
|
|
embiggen = [1.0] # If not specified, assume no scaling
|
|
elif embiggen[0] < 0:
|
|
embiggen[0] = 1.0
|
|
print(
|
|
'>> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !')
|
|
if len(embiggen) < 2:
|
|
embiggen.append(0.75)
|
|
elif embiggen[1] > 1.0 or embiggen[1] < 0:
|
|
embiggen[1] = 0.75
|
|
print('>> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !')
|
|
if len(embiggen) < 3:
|
|
embiggen.append(0.25)
|
|
elif embiggen[2] < 0:
|
|
embiggen[2] = 0.25
|
|
print('>> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !')
|
|
|
|
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
|
|
# and then sort them, because... people.
|
|
if embiggen_tiles:
|
|
embiggen_tiles = list(map(lambda n: n-1, embiggen_tiles))
|
|
embiggen_tiles.sort()
|
|
|
|
if strength >= 0.5:
|
|
print(f'* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45.')
|
|
|
|
# Prep img2img generator, since we wrap over it
|
|
gen_img2img = Img2Img(self.model,self.precision)
|
|
|
|
# Open original init image (not a tensor) to manipulate
|
|
initsuperimage = Image.open(init_img)
|
|
|
|
with Image.open(init_img) as img:
|
|
initsuperimage = img.convert('RGB')
|
|
|
|
# Size of the target super init image in pixels
|
|
initsuperwidth, initsuperheight = initsuperimage.size
|
|
|
|
# Increase by scaling factor if not already resized, using ESRGAN as able
|
|
if embiggen[0] != 1.0:
|
|
initsuperwidth = round(initsuperwidth*embiggen[0])
|
|
initsuperheight = round(initsuperheight*embiggen[0])
|
|
if embiggen[1] > 0: # No point in ESRGAN upscaling if strength is set zero
|
|
from ldm.invoke.restoration.realesrgan import ESRGAN
|
|
esrgan = ESRGAN()
|
|
print(
|
|
f'>> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}')
|
|
if embiggen[0] > 2:
|
|
initsuperimage = esrgan.process(
|
|
initsuperimage,
|
|
embiggen[1], # upscale strength
|
|
self.seed,
|
|
4, # upscale scale
|
|
)
|
|
else:
|
|
initsuperimage = esrgan.process(
|
|
initsuperimage,
|
|
embiggen[1], # upscale strength
|
|
self.seed,
|
|
2, # upscale scale
|
|
)
|
|
# We could keep recursively re-running ESRGAN for a requested embiggen[0] larger than 4x
|
|
# but from personal experiance it doesn't greatly improve anything after 4x
|
|
# Resize to target scaling factor resolution
|
|
initsuperimage = initsuperimage.resize(
|
|
(initsuperwidth, initsuperheight), Image.Resampling.LANCZOS)
|
|
|
|
# Use width and height as tile widths and height
|
|
# Determine buffer size in pixels
|
|
if embiggen[2] < 1:
|
|
if embiggen[2] < 0:
|
|
embiggen[2] = 0
|
|
overlap_size_x = round(embiggen[2] * width)
|
|
overlap_size_y = round(embiggen[2] * height)
|
|
else:
|
|
overlap_size_x = round(embiggen[2])
|
|
overlap_size_y = round(embiggen[2])
|
|
|
|
# With overall image width and height known, determine how many tiles we need
|
|
def ceildiv(a, b):
|
|
return -1 * (-a // b)
|
|
|
|
# X and Y needs to be determined independantly (we may have savings on one based on the buffer pixel count)
|
|
# (initsuperwidth - width) is the area remaining to the right that we need to layers tiles to fill
|
|
# (width - overlap_size_x) is how much new we can fill with a single tile
|
|
emb_tiles_x = 1
|
|
emb_tiles_y = 1
|
|
if (initsuperwidth - width) > 0:
|
|
emb_tiles_x = ceildiv(initsuperwidth - width,
|
|
width - overlap_size_x) + 1
|
|
if (initsuperheight - height) > 0:
|
|
emb_tiles_y = ceildiv(initsuperheight - height,
|
|
height - overlap_size_y) + 1
|
|
# Sanity
|
|
assert emb_tiles_x > 1 or emb_tiles_y > 1, f'ERROR: Based on the requested dimensions of {initsuperwidth}x{initsuperheight} and tiles of {width}x{height} you don\'t need to Embiggen! Check your arguments.'
|
|
|
|
# Prep alpha layers --------------
|
|
# https://stackoverflow.com/questions/69321734/how-to-create-different-transparency-like-gradient-with-python-pil
|
|
# agradientL is Left-side transparent
|
|
agradientL = Image.linear_gradient('L').rotate(
|
|
90).resize((overlap_size_x, height))
|
|
# agradientT is Top-side transparent
|
|
agradientT = Image.linear_gradient('L').resize((width, overlap_size_y))
|
|
# radial corner is the left-top corner, made full circle then cut to just the left-top quadrant
|
|
agradientC = Image.new('L', (256, 256))
|
|
for y in range(256):
|
|
for x in range(256):
|
|
# Find distance to lower right corner (numpy takes arrays)
|
|
distanceToLR = np.sqrt([(255 - x) ** 2 + (255 - y) ** 2])[0]
|
|
# Clamp values to max 255
|
|
if distanceToLR > 255:
|
|
distanceToLR = 255
|
|
#Place the pixel as invert of distance
|
|
agradientC.putpixel((x, y), round(255 - distanceToLR))
|
|
|
|
# Create alternative asymmetric diagonal corner to use on "tailing" intersections to prevent hard edges
|
|
# Fits for a left-fading gradient on the bottom side and full opacity on the right side.
|
|
agradientAsymC = Image.new('L', (256, 256))
|
|
for y in range(256):
|
|
for x in range(256):
|
|
value = round(max(0, x-(255-y)) * (255 / max(1,y)))
|
|
#Clamp values
|
|
value = max(0, value)
|
|
value = min(255, value)
|
|
agradientAsymC.putpixel((x, y), value)
|
|
|
|
# Create alpha layers default fully white
|
|
alphaLayerL = Image.new("L", (width, height), 255)
|
|
alphaLayerT = Image.new("L", (width, height), 255)
|
|
alphaLayerLTC = Image.new("L", (width, height), 255)
|
|
# Paste gradients into alpha layers
|
|
alphaLayerL.paste(agradientL, (0, 0))
|
|
alphaLayerT.paste(agradientT, (0, 0))
|
|
alphaLayerLTC.paste(agradientL, (0, 0))
|
|
alphaLayerLTC.paste(agradientT, (0, 0))
|
|
alphaLayerLTC.paste(agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0))
|
|
# make masks with an asymmetric upper-right corner so when the curved transparent corner of the next tile
|
|
# to its right is placed it doesn't reveal a hard trailing semi-transparent edge in the overlapping space
|
|
alphaLayerTaC = alphaLayerT.copy()
|
|
alphaLayerTaC.paste(agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
|
alphaLayerLTaC = alphaLayerLTC.copy()
|
|
alphaLayerLTaC.paste(agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
|
|
|
if embiggen_tiles:
|
|
# Individual unconnected sides
|
|
alphaLayerR = Image.new("L", (width, height), 255)
|
|
alphaLayerR.paste(agradientL.rotate(
|
|
180), (width - overlap_size_x, 0))
|
|
alphaLayerB = Image.new("L", (width, height), 255)
|
|
alphaLayerB.paste(agradientT.rotate(
|
|
180), (0, height - overlap_size_y))
|
|
alphaLayerTB = Image.new("L", (width, height), 255)
|
|
alphaLayerTB.paste(agradientT, (0, 0))
|
|
alphaLayerTB.paste(agradientT.rotate(
|
|
180), (0, height - overlap_size_y))
|
|
alphaLayerLR = Image.new("L", (width, height), 255)
|
|
alphaLayerLR.paste(agradientL, (0, 0))
|
|
alphaLayerLR.paste(agradientL.rotate(
|
|
180), (width - overlap_size_x, 0))
|
|
|
|
# Sides and corner Layers
|
|
alphaLayerRBC = Image.new("L", (width, height), 255)
|
|
alphaLayerRBC.paste(agradientL.rotate(
|
|
180), (width - overlap_size_x, 0))
|
|
alphaLayerRBC.paste(agradientT.rotate(
|
|
180), (0, height - overlap_size_y))
|
|
alphaLayerRBC.paste(agradientC.rotate(180).resize(
|
|
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
|
|
alphaLayerLBC = Image.new("L", (width, height), 255)
|
|
alphaLayerLBC.paste(agradientL, (0, 0))
|
|
alphaLayerLBC.paste(agradientT.rotate(
|
|
180), (0, height - overlap_size_y))
|
|
alphaLayerLBC.paste(agradientC.rotate(90).resize(
|
|
(overlap_size_x, overlap_size_y)), (0, height - overlap_size_y))
|
|
alphaLayerRTC = Image.new("L", (width, height), 255)
|
|
alphaLayerRTC.paste(agradientL.rotate(
|
|
180), (width - overlap_size_x, 0))
|
|
alphaLayerRTC.paste(agradientT, (0, 0))
|
|
alphaLayerRTC.paste(agradientC.rotate(270).resize(
|
|
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
|
|
|
# All but X layers
|
|
alphaLayerABT = Image.new("L", (width, height), 255)
|
|
alphaLayerABT.paste(alphaLayerLBC, (0, 0))
|
|
alphaLayerABT.paste(agradientL.rotate(
|
|
180), (width - overlap_size_x, 0))
|
|
alphaLayerABT.paste(agradientC.rotate(180).resize(
|
|
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
|
|
alphaLayerABL = Image.new("L", (width, height), 255)
|
|
alphaLayerABL.paste(alphaLayerRTC, (0, 0))
|
|
alphaLayerABL.paste(agradientT.rotate(
|
|
180), (0, height - overlap_size_y))
|
|
alphaLayerABL.paste(agradientC.rotate(180).resize(
|
|
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
|
|
alphaLayerABR = Image.new("L", (width, height), 255)
|
|
alphaLayerABR.paste(alphaLayerLBC, (0, 0))
|
|
alphaLayerABR.paste(agradientT, (0, 0))
|
|
alphaLayerABR.paste(agradientC.resize(
|
|
(overlap_size_x, overlap_size_y)), (0, 0))
|
|
alphaLayerABB = Image.new("L", (width, height), 255)
|
|
alphaLayerABB.paste(alphaLayerRTC, (0, 0))
|
|
alphaLayerABB.paste(agradientL, (0, 0))
|
|
alphaLayerABB.paste(agradientC.resize(
|
|
(overlap_size_x, overlap_size_y)), (0, 0))
|
|
|
|
# All-around layer
|
|
alphaLayerAA = Image.new("L", (width, height), 255)
|
|
alphaLayerAA.paste(alphaLayerABT, (0, 0))
|
|
alphaLayerAA.paste(agradientT, (0, 0))
|
|
alphaLayerAA.paste(agradientC.resize(
|
|
(overlap_size_x, overlap_size_y)), (0, 0))
|
|
alphaLayerAA.paste(agradientC.rotate(270).resize(
|
|
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
|
|
|
# Clean up temporary gradients
|
|
del agradientL
|
|
del agradientT
|
|
del agradientC
|
|
|
|
def make_image():
|
|
# Make main tiles -------------------------------------------------
|
|
if embiggen_tiles:
|
|
print(f'>> Making {len(embiggen_tiles)} Embiggen tiles...')
|
|
else:
|
|
print(
|
|
f'>> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})...')
|
|
|
|
emb_tile_store = []
|
|
# Although we could use the same seed for every tile for determinism, at higher strengths this may
|
|
# produce duplicated structures for each tile and make the tiling effect more obvious
|
|
# instead track and iterate a local seed we pass to Img2Img
|
|
seed = self.seed
|
|
seedintlimit = np.iinfo(np.uint32).max - 1 # only retreive this one from numpy
|
|
|
|
for tile in range(emb_tiles_x * emb_tiles_y):
|
|
# Don't iterate on first tile
|
|
if tile != 0:
|
|
if seed < seedintlimit:
|
|
seed += 1
|
|
else:
|
|
seed = 0
|
|
|
|
# Determine if this is a re-run and replace
|
|
if embiggen_tiles and not tile in embiggen_tiles:
|
|
continue
|
|
# Get row and column entries
|
|
emb_row_i = tile // emb_tiles_x
|
|
emb_column_i = tile % emb_tiles_x
|
|
# Determine bounds to cut up the init image
|
|
# Determine upper-left point
|
|
if emb_column_i + 1 == emb_tiles_x:
|
|
left = initsuperwidth - width
|
|
else:
|
|
left = round(emb_column_i * (width - overlap_size_x))
|
|
if emb_row_i + 1 == emb_tiles_y:
|
|
top = initsuperheight - height
|
|
else:
|
|
top = round(emb_row_i * (height - overlap_size_y))
|
|
right = left + width
|
|
bottom = top + height
|
|
|
|
# Cropped image of above dimension (does not modify the original)
|
|
newinitimage = initsuperimage.crop((left, top, right, bottom))
|
|
# DEBUG:
|
|
# newinitimagepath = init_img[0:-4] + f'_emb_Ti{tile}.png'
|
|
# newinitimage.save(newinitimagepath)
|
|
|
|
if embiggen_tiles:
|
|
print(
|
|
f'Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)')
|
|
else:
|
|
print(
|
|
f'Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles')
|
|
|
|
# create a torch tensor from an Image
|
|
newinitimage = np.array(
|
|
newinitimage).astype(np.float32) / 255.0
|
|
newinitimage = newinitimage[None].transpose(0, 3, 1, 2)
|
|
newinitimage = torch.from_numpy(newinitimage)
|
|
newinitimage = 2.0 * newinitimage - 1.0
|
|
newinitimage = newinitimage.to(self.model.device)
|
|
|
|
tile_results = gen_img2img.generate(
|
|
prompt,
|
|
iterations = 1,
|
|
seed = seed,
|
|
sampler = DDIMSampler(self.model, device=self.model.device),
|
|
steps = steps,
|
|
cfg_scale = cfg_scale,
|
|
conditioning = conditioning,
|
|
ddim_eta = ddim_eta,
|
|
image_callback = None, # called only after the final image is generated
|
|
step_callback = step_callback, # called after each intermediate image is generated
|
|
width = width,
|
|
height = height,
|
|
init_image = newinitimage, # notice that init_image is different from init_img
|
|
mask_image = None,
|
|
strength = strength,
|
|
)
|
|
|
|
emb_tile_store.append(tile_results[0][0])
|
|
# DEBUG (but, also has other uses), worth saving if you want tiles without a transparency overlap to manually composite
|
|
# emb_tile_store[-1].save(init_img[0:-4] + f'_emb_To{tile}.png')
|
|
del newinitimage
|
|
|
|
# Sanity check we have them all
|
|
if len(emb_tile_store) == (emb_tiles_x * emb_tiles_y) or (embiggen_tiles != [] and len(emb_tile_store) == len(embiggen_tiles)):
|
|
outputsuperimage = Image.new(
|
|
"RGBA", (initsuperwidth, initsuperheight))
|
|
if embiggen_tiles:
|
|
outputsuperimage.alpha_composite(
|
|
initsuperimage.convert('RGBA'), (0, 0))
|
|
for tile in range(emb_tiles_x * emb_tiles_y):
|
|
if embiggen_tiles:
|
|
if tile in embiggen_tiles:
|
|
intileimage = emb_tile_store.pop(0)
|
|
else:
|
|
continue
|
|
else:
|
|
intileimage = emb_tile_store[tile]
|
|
intileimage = intileimage.convert('RGBA')
|
|
# Get row and column entries
|
|
emb_row_i = tile // emb_tiles_x
|
|
emb_column_i = tile % emb_tiles_x
|
|
if emb_row_i == 0 and emb_column_i == 0 and not embiggen_tiles:
|
|
left = 0
|
|
top = 0
|
|
else:
|
|
# Determine upper-left point
|
|
if emb_column_i + 1 == emb_tiles_x:
|
|
left = initsuperwidth - width
|
|
else:
|
|
left = round(emb_column_i *
|
|
(width - overlap_size_x))
|
|
if emb_row_i + 1 == emb_tiles_y:
|
|
top = initsuperheight - height
|
|
else:
|
|
top = round(emb_row_i * (height - overlap_size_y))
|
|
# Handle gradients for various conditions
|
|
# Handle emb_rerun case
|
|
if embiggen_tiles:
|
|
# top of image
|
|
if emb_row_i == 0:
|
|
if emb_column_i == 0:
|
|
if (tile+1) in embiggen_tiles: # Look-ahead right
|
|
if (tile+emb_tiles_x) not in embiggen_tiles: # Look-ahead down
|
|
intileimage.putalpha(alphaLayerB)
|
|
# Otherwise do nothing on this tile
|
|
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
|
intileimage.putalpha(alphaLayerR)
|
|
else:
|
|
intileimage.putalpha(alphaLayerRBC)
|
|
elif emb_column_i == emb_tiles_x - 1:
|
|
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
|
intileimage.putalpha(alphaLayerL)
|
|
else:
|
|
intileimage.putalpha(alphaLayerLBC)
|
|
else:
|
|
if (tile+1) in embiggen_tiles: # Look-ahead right
|
|
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
|
intileimage.putalpha(alphaLayerL)
|
|
else:
|
|
intileimage.putalpha(alphaLayerLBC)
|
|
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
|
intileimage.putalpha(alphaLayerLR)
|
|
else:
|
|
intileimage.putalpha(alphaLayerABT)
|
|
# bottom of image
|
|
elif emb_row_i == emb_tiles_y - 1:
|
|
if emb_column_i == 0:
|
|
if (tile+1) in embiggen_tiles: # Look-ahead right
|
|
intileimage.putalpha(alphaLayerTaC)
|
|
else:
|
|
intileimage.putalpha(alphaLayerRTC)
|
|
elif emb_column_i == emb_tiles_x - 1:
|
|
# No tiles to look ahead to
|
|
intileimage.putalpha(alphaLayerLTC)
|
|
else:
|
|
if (tile+1) in embiggen_tiles: # Look-ahead right
|
|
intileimage.putalpha(alphaLayerLTaC)
|
|
else:
|
|
intileimage.putalpha(alphaLayerABB)
|
|
# vertical middle of image
|
|
else:
|
|
if emb_column_i == 0:
|
|
if (tile+1) in embiggen_tiles: # Look-ahead right
|
|
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
|
intileimage.putalpha(alphaLayerTaC)
|
|
else:
|
|
intileimage.putalpha(alphaLayerTB)
|
|
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
|
intileimage.putalpha(alphaLayerRTC)
|
|
else:
|
|
intileimage.putalpha(alphaLayerABL)
|
|
elif emb_column_i == emb_tiles_x - 1:
|
|
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
|
intileimage.putalpha(alphaLayerLTC)
|
|
else:
|
|
intileimage.putalpha(alphaLayerABR)
|
|
else:
|
|
if (tile+1) in embiggen_tiles: # Look-ahead right
|
|
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
|
intileimage.putalpha(alphaLayerLTaC)
|
|
else:
|
|
intileimage.putalpha(alphaLayerABR)
|
|
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
|
intileimage.putalpha(alphaLayerABB)
|
|
else:
|
|
intileimage.putalpha(alphaLayerAA)
|
|
# Handle normal tiling case (much simpler - since we tile left to right, top to bottom)
|
|
else:
|
|
if emb_row_i == 0 and emb_column_i >= 1:
|
|
intileimage.putalpha(alphaLayerL)
|
|
elif emb_row_i >= 1 and emb_column_i == 0:
|
|
if emb_column_i + 1 == emb_tiles_x: # If we don't have anything that can be placed to the right
|
|
intileimage.putalpha(alphaLayerT)
|
|
else:
|
|
intileimage.putalpha(alphaLayerTaC)
|
|
else:
|
|
if emb_column_i + 1 == emb_tiles_x: # If we don't have anything that can be placed to the right
|
|
intileimage.putalpha(alphaLayerLTC)
|
|
else:
|
|
intileimage.putalpha(alphaLayerLTaC)
|
|
# Layer tile onto final image
|
|
outputsuperimage.alpha_composite(intileimage, (left, top))
|
|
else:
|
|
print('Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation.')
|
|
|
|
# after internal loops and patching up return Embiggen image
|
|
return outputsuperimage
|
|
# end of function declaration
|
|
return make_image
|