InvokeAI/ldm/invoke/generator/img2img.py
2022-11-30 15:33:02 -08:00

72 lines
2.7 KiB
Python

'''
ldm.invoke.generator.img2img descends from ldm.invoke.generator
'''
import torch
from ldm.invoke.generator.base import Generator
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
class Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # by get_noise()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,init_image,strength,step_callback=None,threshold=0.0,perlin=0.0,**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it.
"""
self.perlin = perlin
uc, c, extra_conditioning_info = conditioning
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
def make_image(x_T):
# FIXME: use x_T for initial seeded noise
pipeline_output = pipeline.img2img_from_embeddings(
init_image, strength, steps, c, uc, cfg_scale,
extra_conditioning_info=extra_conditioning_info,
noise_func=self.get_noise_like,
callback=step_callback
)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
return make_image
def get_noise_like(self, like: torch.Tensor):
device = like.device
if device.type == 'mps':
x = torch.randn_like(like, device='cpu').to(device)
else:
x = torch.randn_like(like, device=device)
if self.perlin > 0.0:
shape = like.shape
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
return x
def get_noise(self,width,height):
# copy of the Txt2Img.get_noise
device = self.model.device
if self.use_mps_noise or device.type == 'mps':
x = torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
device='cpu').to(device)
else:
x = torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
device=device)
if self.perlin > 0.0:
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
return x