InvokeAI/ldm/invoke/generator/inpaint.py
2022-12-04 20:12:04 -08:00

320 lines
12 KiB
Python

'''
ldm.invoke.generator.inpaint descends from ldm.invoke.generator
'''
from __future__ import annotations
import math
import PIL
import cv2
import numpy as np
import torch
from PIL import Image, ImageFilter, ImageOps, ImageChops
from ldm.invoke.generator.diffusers_pipeline import image_resized_to_grid_as_tensor, StableDiffusionGeneratorPipeline
from ldm.invoke.generator.img2img import Img2Img
from ldm.invoke.globals import Globals
from ldm.util import debug_image
infill_methods: list[str] = list()
if Globals.try_patchmatch:
from patchmatch import patch_match
if patch_match.patchmatch_available:
print('>> Patchmatch initialized')
infill_methods.append('patchmatch')
else:
print('>> Patchmatch not loaded (nonfatal)')
else:
print('>> Patchmatch loading disabled')
infill_methods.append('tile')
class Inpaint(Img2Img):
def __init__(self, model, precision):
self.inpaint_height = 0
self.inpaint_width = 0
self.enable_image_debugging = False
self.init_latent = None
self.pil_image = None
self.pil_mask = None
self.mask_blur_radius = 0
super().__init__(model, precision)
# Outpaint support code
def get_tile_images(self, image: np.ndarray, width=8, height=8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False
)
def infill_patchmatch(self, im: Image.Image) -> Image:
if im.mode != 'RGBA':
return im
# Skip patchmatch if patchmatch isn't available
if not patch_match.patchmatch_available:
return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = patch_match.inpaint(im.convert('RGB'), ImageOps.invert(im.split()[-1]), patch_size = 3)
im_patched = Image.fromarray(im_patched_np, mode = 'RGB')
return im_patched
def tile_fill_missing(self, im: Image.Image, tile_size: int = 16, seed: int = None) -> Image:
# Only fill if there's an alpha layer
if im.mode != 'RGBA':
return im
a = np.asarray(im, dtype=np.uint8)
tile_size = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = self.get_tile_images(a,*tile_size).copy()
# Get the mask as tiles
tiles_mask = tiles[:,:,:,:,3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n,ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = (tiles_mask > 0)
tiles_mask = tiles_mask.reshape((n,ny)).all(axis = 1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), * tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum()
rng = np.random.default_rng(seed = seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count),:,:,:]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1,2)
st = tiles_all.reshape((math.prod(tiles_all.shape[0:2]), math.prod(tiles_all.shape[2:4]), tiles_all.shape[4]))
si = Image.fromarray(st, mode='RGBA')
return si
def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image:
npimg = np.asarray(mask, dtype=np.uint8)
# Detect any partially transparent regions
npgradient = np.uint8(255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0)))
# Detect hard edges
npedge = cv2.Canny(npimg, threshold1=100, threshold2=200)
# Combine
npmask = npgradient + npedge
# Expand
npmask = cv2.dilate(npmask, np.ones((3,3), np.uint8), iterations = int(edge_size / 2))
new_mask = Image.fromarray(npmask)
if edge_blur > 0:
new_mask = new_mask.filter(ImageFilter.BoxBlur(edge_blur))
return ImageOps.invert(new_mask)
def seam_paint(self, im: Image.Image, seam_size: int, seam_blur: int, prompt, sampler, steps, cfg_scale, ddim_eta,
conditioning, strength, noise, infill_method, step_callback) -> Image.Image:
hard_mask = self.pil_image.split()[-1].copy()
mask = self.mask_edge(hard_mask, seam_size, seam_blur)
make_image = self.get_make_image(
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
init_image = im.copy().convert('RGBA'),
mask_image = mask,
strength = strength,
mask_blur_radius = 0,
seam_size = 0,
step_callback = step_callback,
inpaint_width = im.width,
inpaint_height = im.height,
infill_method = infill_method
)
seam_noise = self.get_noise(im.width, im.height)
result = make_image(seam_noise)
return result
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,
init_image: PIL.Image.Image | torch.FloatTensor,
mask_image: PIL.Image.Image | torch.FloatTensor,
strength: float,
mask_blur_radius: int = 8,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 0,
seam_blur: int = 0,
seam_strength: float = 0.7,
seam_steps: int = 10,
tile_size: int = 32,
step_callback=None,
inpaint_replace=False, enable_image_debugging=False,
infill_method = infill_methods[0], # The infill method to use
inpaint_width=None,
inpaint_height=None,
**kwargs):
"""
Returns a function returning an image derived from the prompt and
the initial image + mask. Return value depends on the seed at
the time you call it. kwargs are 'init_latent' and 'strength'
"""
self.enable_image_debugging = enable_image_debugging
self.inpaint_width = inpaint_width
self.inpaint_height = inpaint_height
if isinstance(init_image, PIL.Image.Image):
self.pil_image = init_image.copy()
# Do infill
if infill_method == 'patchmatch' and patch_match.patchmatch_available:
init_filled = self.infill_patchmatch(self.pil_image.copy())
else: # if infill_method == 'tile': # Only two methods right now, so always use 'tile' if not patchmatch
init_filled = self.tile_fill_missing(
self.pil_image.copy(),
seed = self.seed,
tile_size = tile_size
)
init_filled.paste(init_image, (0,0), init_image.split()[-1])
# Resize if requested for inpainting
if inpaint_width and inpaint_height:
init_filled = init_filled.resize((inpaint_width, inpaint_height))
debug_image(init_filled, "init_filled", debug_status=self.enable_image_debugging)
# Create init tensor
init_image = image_resized_to_grid_as_tensor(init_filled.convert('RGB'))
if isinstance(mask_image, PIL.Image.Image):
self.pil_mask = mask_image.copy()
debug_image(mask_image, "mask_image BEFORE multiply with pil_image", debug_status=self.enable_image_debugging)
init_alpha = self.pil_image.getchannel("A")
if mask_image.mode != "L":
# FIXME: why do we get passed an RGB image here? We can only use single-channel.
mask_image = mask_image.convert("L")
mask_image = ImageChops.multiply(mask_image, init_alpha)
self.pil_mask = mask_image
# Resize if requested for inpainting
if inpaint_width and inpaint_height:
mask_image = mask_image.resize((inpaint_width, inpaint_height))
debug_image(mask_image, "mask_image AFTER multiply with pil_image", debug_status=self.enable_image_debugging)
mask: torch.FloatTensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
else:
mask: torch.FloatTensor = mask_image
self.mask_blur_radius = mask_blur_radius
# todo: support cross-attention control
uc, c, _ = conditioning
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
def make_image(x_T):
# FIXME: some of this z_enc and inpaint_replace stuff was probably important
# # to replace masked area with latent noise, weighted by inpaint_replace strength
# if inpaint_replace > 0.0:
# print(f'>> inpaint will replace what was under the mask with a strength of {inpaint_replace}')
# l_noise = self.get_noise(kwargs['width'],kwargs['height'])
# inverted_mask = 1.0-mask # there will be 1s where the mask is
# masked_region = (1.0-inpaint_replace) * inverted_mask * z_enc + inpaint_replace * inverted_mask * l_noise
# z_enc = z_enc * mask + masked_region
pipeline_output = pipeline.inpaint_from_embeddings(
init_image=init_image,
mask=1 - mask, # expects white means "paint here."
strength=strength,
num_inference_steps=steps,
text_embeddings=c,
unconditioned_embeddings=uc,
guidance_scale=cfg_scale,
noise_func=self.get_noise_like,
callback=step_callback,
)
result = pipeline.numpy_to_pil(pipeline_output.images)[0]
# Seam paint if this is our first pass (seam_size set to 0 during seam painting)
if seam_size > 0:
old_image = self.pil_image or init_image
old_mask = self.pil_mask or mask_image
result = self.seam_paint(result, seam_size, seam_blur, prompt, sampler, seam_steps, cfg_scale, ddim_eta,
conditioning, seam_strength, x_T, infill_method, step_callback)
# Restore original settings
self.get_make_image(prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,
old_image,
old_mask,
strength,
mask_blur_radius, seam_size, seam_blur, seam_strength,
seam_steps, tile_size, step_callback,
inpaint_replace, enable_image_debugging,
inpaint_width = inpaint_width,
inpaint_height = inpaint_height,
infill_method = infill_method,
**kwargs)
return result
return make_image
def sample_to_image(self, samples)->Image.Image:
gen_result = super().sample_to_image(samples).convert('RGB')
debug_image(gen_result, "gen_result", debug_status=self.enable_image_debugging)
# Resize if necessary
if self.inpaint_width and self.inpaint_height:
gen_result = gen_result.resize(self.pil_image.size)
if self.pil_image is None or self.pil_mask is None:
return gen_result
corrected_result = super().repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius)
debug_image(corrected_result, "corrected_result", debug_status=self.enable_image_debugging)
return corrected_result