InvokeAI/ldm/invoke/restoration/gfpgan.py
blessedcoolant 1d11e06e6f Remove gfpgan_dir
+ Update GFPGAN Model Path Defaults
>  Update them to match the new file heirarchy
2022-11-12 19:24:11 -05:00

80 lines
2.5 KiB
Python

import torch
import warnings
import os
import sys
import numpy as np
from PIL import Image
class GFPGAN():
def __init__(
self,
gfpgan_model_path='./models/gfpgan/GFPGANv1.4.pth') -> None:
self.model_path = os.path.join(gfpgan_model_path)
self.gfpgan_model_exists = os.path.isfile(self.model_path)
if not self.gfpgan_model_exists:
print('## NOT FOUND: GFPGAN model not found at ' + self.model_path)
return None
def model_exists(self):
return os.path.isfile(self.model_path)
def process(self, image, strength: float, seed: str = None):
if seed is not None:
print(f'>> GFPGAN - Restoring Faces for image seed:{seed}')
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
try:
from gfpgan import GFPGANer
self.gfpgan = GFPGANer(
model_path=self.model_path,
upscale=1,
arch='clean',
channel_multiplier=2,
bg_upsampler=None,
)
except Exception:
import traceback
print('>> Error loading GFPGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if self.gfpgan is None:
print(
f'>> WARNING: GFPGAN not initialized.'
)
print(
f'>> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}'
)
image = image.convert('RGB')
# GFPGAN expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[...,::-1]
_, _, restored_img = self.gfpgan.enhance(
bgr_image_array,
has_aligned=False,
only_center_face=False,
paste_back=True,
)
# Flip the channels back to RGB
res = Image.fromarray(restored_img[...,::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if restored_img.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.gfpgan = None
return res