InvokeAI/invokeai/app/util/step_callback.py
psychedelicious 182cb51bf0 fix(events): fix denoise progress percentage
- Restore calculation of step percentage but in the backend instead of client
- Simplify signatures for denoise progress event callbacks
- Clean up `step_callback.py` (types, do not recreate constant matrix on every step, formatting)
2024-05-20 15:19:08 +10:00

98 lines
3.6 KiB
Python

from typing import TYPE_CHECKING, Callable, Optional
import torch
from PIL import Image
from invokeai.app.services.session_processor.session_processor_common import CanceledException, ProgressImage
from invokeai.backend.model_manager.config import BaseModelType
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util.util import image_to_dataURL
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.shared.invocation_context import InvocationContextData
# fast latents preview matrix for sdxl
# generated by @StAlKeR7779
SDXL_LATENT_RGB_FACTORS = [
# R G B
[0.3816, 0.4930, 0.5320],
[-0.3753, 0.1631, 0.1739],
[0.1770, 0.3588, -0.2048],
[-0.4350, -0.2644, -0.4289],
]
SDXL_SMOOTH_MATRIX = [
[0.0358, 0.0964, 0.0358],
[0.0964, 0.4711, 0.0964],
[0.0358, 0.0964, 0.0358],
]
# origingally adapted from code by @erucipe and @keturn here:
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
# these updated numbers for v1.5 are from @torridgristle
SD1_5_LATENT_RGB_FACTORS = [
# R G B
[0.3444, 0.1385, 0.0670], # L1
[0.1247, 0.4027, 0.1494], # L2
[-0.3192, 0.2513, 0.2103], # L3
[-0.1307, -0.1874, -0.7445], # L4
]
def sample_to_lowres_estimated_image(
samples: torch.Tensor, latent_rgb_factors: torch.Tensor, smooth_matrix: Optional[torch.Tensor] = None
):
latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors
if smooth_matrix is not None:
latent_image = latent_image.unsqueeze(0).permute(3, 0, 1, 2)
latent_image = torch.nn.functional.conv2d(latent_image, smooth_matrix.reshape((1, 1, 3, 3)), padding=1)
latent_image = latent_image.permute(1, 2, 3, 0).squeeze(0)
latents_ubyte = (
((latent_image + 1) / 2).clamp(0, 1).mul(0xFF).byte() # change scale from -1..1 to 0..1 # to 0..255
).cpu()
return Image.fromarray(latents_ubyte.numpy())
def stable_diffusion_step_callback(
context_data: "InvocationContextData",
intermediate_state: PipelineIntermediateState,
base_model: BaseModelType,
events: "EventServiceBase",
is_canceled: Callable[[], bool],
) -> None:
if is_canceled():
raise CanceledException
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be. Use
# that estimate if it is available.
if intermediate_state.predicted_original is not None:
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
if base_model in [BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner]:
sdxl_latent_rgb_factors = torch.tensor(SDXL_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
sdxl_smooth_matrix = torch.tensor(SDXL_SMOOTH_MATRIX, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix)
else:
v1_5_latent_rgb_factors = torch.tensor(SD1_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
events.emit_invocation_denoise_progress(
context_data.queue_item,
context_data.invocation,
intermediate_state,
ProgressImage(dataURL=dataURL, width=width, height=height),
)