mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
85 lines
3.4 KiB
Python
85 lines
3.4 KiB
Python
"""
|
|
This module defines a singleton object, "safety_checker" that
|
|
wraps the safety_checker model. It respects the global "nsfw_checker"
|
|
configuration variable, that allows the checker to be supressed.
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from PIL import Image, ImageFilter
|
|
from transformers import AutoFeatureExtractor
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
from invokeai.app.services.config.config_default import get_config
|
|
from invokeai.backend.util.devices import TorchDevice
|
|
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
|
|
|
repo_id = "CompVis/stable-diffusion-safety-checker"
|
|
CHECKER_PATH = "core/convert/stable-diffusion-safety-checker"
|
|
|
|
|
|
class SafetyChecker:
|
|
"""
|
|
Wrapper around SafetyChecker model.
|
|
"""
|
|
|
|
feature_extractor = None
|
|
safety_checker = None
|
|
|
|
@classmethod
|
|
def _load_safety_checker(cls):
|
|
if cls.safety_checker is not None and cls.feature_extractor is not None:
|
|
return
|
|
|
|
try:
|
|
model_path = get_config().models_path / CHECKER_PATH
|
|
if model_path.exists():
|
|
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(model_path)
|
|
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_path)
|
|
else:
|
|
model_path.mkdir(parents=True, exist_ok=True)
|
|
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
|
cls.feature_extractor.save_pretrained(model_path, safe_serialization=True)
|
|
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(repo_id)
|
|
cls.safety_checker.save_pretrained(model_path, safe_serialization=True)
|
|
except Exception as e:
|
|
logger.warning(f"Could not load NSFW checker: {str(e)}")
|
|
|
|
@classmethod
|
|
def has_nsfw_concept(cls, image: Image.Image) -> bool:
|
|
cls._load_safety_checker()
|
|
if cls.safety_checker is None or cls.feature_extractor is None:
|
|
return False
|
|
device = TorchDevice.choose_torch_device()
|
|
features = cls.feature_extractor([image], return_tensors="pt")
|
|
features.to(device)
|
|
cls.safety_checker.to(device)
|
|
x_image = np.array(image).astype(np.float32) / 255.0
|
|
x_image = x_image[None].transpose(0, 3, 1, 2)
|
|
with SilenceWarnings():
|
|
checked_image, has_nsfw_concept = cls.safety_checker(images=x_image, clip_input=features.pixel_values)
|
|
return has_nsfw_concept[0]
|
|
|
|
@classmethod
|
|
def blur_if_nsfw(cls, image: Image.Image) -> Image.Image:
|
|
if cls.has_nsfw_concept(image):
|
|
logger.info("A potentially NSFW image has been detected. Image will be blurred.")
|
|
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
|
|
caution = cls._get_caution_img()
|
|
# Center the caution image on the blurred image
|
|
x = (blurry_image.width - caution.width) // 2
|
|
y = (blurry_image.height - caution.height) // 2
|
|
blurry_image.paste(caution, (x, y), caution)
|
|
image = blurry_image
|
|
|
|
return image
|
|
|
|
@classmethod
|
|
def _get_caution_img(cls) -> Image.Image:
|
|
import invokeai.app.assets.images as image_assets
|
|
|
|
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
|
|
return caution.resize((caution.width // 2, caution.height // 2))
|