mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
196 lines
6.3 KiB
Python
196 lines
6.3 KiB
Python
from __future__ import annotations
|
|
|
|
from abc import ABC, abstractmethod
|
|
from contextlib import ExitStack, contextmanager
|
|
from functools import partial
|
|
from typing import TYPE_CHECKING, Callable, Dict
|
|
|
|
import torch
|
|
from diffusers import UNet2DConditionModel
|
|
|
|
from invokeai.backend.util.devices import TorchDevice
|
|
|
|
if TYPE_CHECKING:
|
|
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
|
|
from invokeai.backend.stable_diffusion.extensions import ExtensionBase
|
|
|
|
|
|
class ExtModifiersApi(ABC):
|
|
@abstractmethod
|
|
def pre_denoise_loop(self, ctx: DenoiseContext):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def post_denoise_loop(self, ctx: DenoiseContext):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def pre_step(self, ctx: DenoiseContext):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def post_step(self, ctx: DenoiseContext):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def modify_noise_prediction(self, ctx: DenoiseContext):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def pre_unet_forward(self, ctx: DenoiseContext):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def pre_unet_load(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
|
|
class ExtOverridesApi(ABC):
|
|
@abstractmethod
|
|
def step(self, orig_func: Callable, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def combine_noise(self, orig_func: Callable, ctx: DenoiseContext):
|
|
pass
|
|
|
|
|
|
class ProxyCallsClass:
|
|
def __init__(self, handler):
|
|
self._handler = handler
|
|
|
|
def __getattr__(self, item):
|
|
return partial(self._handler, item)
|
|
|
|
|
|
class ModifierInjectionPoint:
|
|
def __init__(self):
|
|
self.first = []
|
|
self.any = []
|
|
self.last = []
|
|
|
|
def add(self, func: Callable, order: str):
|
|
if order == "first":
|
|
self.first.append(func)
|
|
elif order == "last":
|
|
self.last.append(func)
|
|
else: # elif order == "any":
|
|
self.any.append(func)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
for func in self.first:
|
|
func(*args, **kwargs)
|
|
for func in self.any:
|
|
func(*args, **kwargs)
|
|
for func in reversed(self.last):
|
|
func(*args, **kwargs)
|
|
|
|
|
|
class ExtensionsManager:
|
|
def __init__(self):
|
|
self.extensions = []
|
|
|
|
self._overrides = {}
|
|
self._modifiers = {}
|
|
|
|
self.modifiers: ExtModifiersApi = ProxyCallsClass(self.call_modifier)
|
|
self.overrides: ExtOverridesApi = ProxyCallsClass(self.call_override)
|
|
|
|
def add_extension(self, ext: ExtensionBase):
|
|
self.extensions.append(ext)
|
|
ordered_extensions = sorted(self.extensions, reverse=True, key=lambda ext: ext.priority)
|
|
|
|
self._overrides.clear()
|
|
self._modifiers.clear()
|
|
|
|
for ext in ordered_extensions:
|
|
for inj_info in ext.injections:
|
|
if inj_info.type == "modifier":
|
|
if inj_info.name not in self._modifiers:
|
|
self._modifiers[inj_info.name] = ModifierInjectionPoint()
|
|
self._modifiers[inj_info.name].add(inj_info.function, inj_info.order)
|
|
|
|
else:
|
|
if inj_info.name in self._overrides:
|
|
raise Exception(f"Already overloaded - {inj_info.name}")
|
|
self._overrides[inj_info.name] = inj_info.function
|
|
|
|
def call_modifier(self, name: str, *args, **kwargs):
|
|
if name in self._modifiers:
|
|
self._modifiers[name](*args, **kwargs)
|
|
|
|
def call_override(self, name: str, orig_func: Callable, *args, **kwargs):
|
|
if name in self._overrides:
|
|
return self._overrides[name](orig_func, *args, **kwargs)
|
|
else:
|
|
return orig_func(*args, **kwargs)
|
|
|
|
# TODO: is there any need in such high abstarction
|
|
# @contextmanager
|
|
# def patch_extensions(self):
|
|
# exit_stack = ExitStack()
|
|
# try:
|
|
# for ext in self.extensions:
|
|
# exit_stack.enter_context(ext.patch_extension(self))
|
|
#
|
|
# yield None
|
|
#
|
|
# finally:
|
|
# exit_stack.close()
|
|
|
|
@contextmanager
|
|
def patch_attention_processor(self, unet: UNet2DConditionModel, attn_processor_cls: object):
|
|
unet_orig_processors = unet.attn_processors
|
|
exit_stack = ExitStack()
|
|
try:
|
|
# just to be sure that attentions have not same processor instance
|
|
attn_procs = {}
|
|
for name in unet.attn_processors.keys():
|
|
attn_procs[name] = attn_processor_cls()
|
|
unet.set_attn_processor(attn_procs)
|
|
|
|
for ext in self.extensions:
|
|
exit_stack.enter_context(ext.patch_attention_processor(attn_processor_cls))
|
|
|
|
yield None
|
|
|
|
finally:
|
|
unet.set_attn_processor(unet_orig_processors)
|
|
exit_stack.close()
|
|
|
|
@contextmanager
|
|
def patch_unet(self, state_dict: Dict[str, torch.Tensor], unet: UNet2DConditionModel):
|
|
exit_stack = ExitStack()
|
|
try:
|
|
changed_keys = set()
|
|
changed_unknown_keys = {}
|
|
|
|
ordered_extensions = sorted(self.extensions, reverse=True, key=lambda ext: ext.priority)
|
|
for ext in ordered_extensions:
|
|
patch_result = exit_stack.enter_context(ext.patch_unet(state_dict, unet))
|
|
if patch_result is None:
|
|
continue
|
|
new_keys, new_unk_keys = patch_result
|
|
changed_keys.update(new_keys)
|
|
# skip already seen keys, as new weight might be changed
|
|
for k, v in new_unk_keys.items():
|
|
if k in changed_unknown_keys:
|
|
continue
|
|
changed_unknown_keys[k] = v
|
|
|
|
yield None
|
|
|
|
finally:
|
|
exit_stack.close()
|
|
assert hasattr(unet, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
|
|
with torch.no_grad():
|
|
for module_key in changed_keys:
|
|
weight = state_dict[module_key]
|
|
unet.get_submodule(module_key).weight.copy_(
|
|
weight, non_blocking=TorchDevice.get_non_blocking(weight.device)
|
|
)
|
|
for module_key, weight in changed_unknown_keys.items():
|
|
unet.get_submodule(module_key).weight.copy_(
|
|
weight, non_blocking=TorchDevice.get_non_blocking(weight.device)
|
|
)
|