InvokeAI/invokeai/backend/stable_diffusion/extensions/inpaint_model.py
2024-07-21 20:45:55 +03:00

67 lines
2.5 KiB
Python

from __future__ import annotations
from typing import TYPE_CHECKING, Optional
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class InpaintModelExt(ExtensionBase):
def __init__(
self,
mask: Optional[torch.Tensor],
masked_latents: Optional[torch.Tensor],
is_gradient_mask: bool,
):
super().__init__()
self.mask = mask
self.masked_latents = masked_latents
self.is_gradient_mask = is_gradient_mask
@staticmethod
def _is_inpaint_model(unet: UNet2DConditionModel):
return unet.conv_in.in_channels == 9
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def init_tensors(self, ctx: DenoiseContext):
if not self._is_inpaint_model(ctx.unet):
raise Exception("InpaintModelExt should be used only on inpaint model!")
if self.mask is None:
self.mask = torch.ones_like(ctx.latents[:1, :1])
self.mask = self.mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
if self.masked_latents is None:
self.masked_latents = torch.zeros_like(ctx.latents[:1])
self.masked_latents = self.masked_latents.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
# TODO: any ideas about order value?
# do last so that other extensions works with normal latents
@callback(ExtensionCallbackType.PRE_UNET, order=1000)
def append_inpaint_layers(self, ctx: DenoiseContext):
batch_size = ctx.unet_kwargs.sample.shape[0]
b_mask = torch.cat([self.mask] * batch_size)
b_masked_latents = torch.cat([self.masked_latents] * batch_size)
ctx.unet_kwargs.sample = torch.cat(
[ctx.unet_kwargs.sample, b_mask, b_masked_latents],
dim=1,
)
# TODO: should here be used order?
# restore unmasked part as inpaint model can change unmasked part slightly
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext):
if self.mask is None:
return
if self.is_gradient_mask:
ctx.latents = torch.where(self.mask > 0, ctx.latents, ctx.inputs.orig_latents)
else:
ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self.mask)