InvokeAI/invokeai/backend/model_manager/config.py
2024-08-26 20:17:50 -04:00

470 lines
16 KiB
Python

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Configuration definitions for image generation models.
Typical usage:
from invokeai.backend.model_manager import ModelConfigFactory
raw = dict(path='models/sd-1/main/foo.ckpt',
name='foo',
base='sd-1',
type='main',
config='configs/stable-diffusion/v1-inference.yaml',
variant='normal',
format='checkpoint'
)
config = ModelConfigFactory.make_config(raw)
print(config.name)
Validation errors will raise an InvalidModelConfigException error.
"""
import time
from enum import Enum
from typing import Literal, Optional, Type, TypeAlias, Union
import diffusers
import torch
from diffusers.models.modeling_utils import ModelMixin
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
from typing_extensions import Annotated, Any, Dict
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_hash.hash_validator import validate_hash
from invokeai.backend.raw_model import RawModel
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
# ModelMixin is the base class for all diffusers and transformers models
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor], diffusers.DiffusionPipeline]
class InvalidModelConfigException(Exception):
"""Exception for when config parser doesn't recognized this combination of model type and format."""
class BaseModelType(str, Enum):
"""Base model type."""
Any = "any"
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
Flux = "flux"
# Kandinsky2_1 = "kandinsky-2.1"
class ModelType(str, Enum):
"""Model type."""
ONNX = "onnx"
Main = "main"
VAE = "vae"
LoRA = "lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
CLIPVision = "clip_vision"
T2IAdapter = "t2i_adapter"
SpandrelImageToImage = "spandrel_image_to_image"
class SubModelType(str, Enum):
"""Submodel type."""
UNet = "unet"
Transformer = "transformer"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
VAE = "vae"
VAEDecoder = "vae_decoder"
VAEEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
class ModelVariantType(str, Enum):
"""Variant type."""
Normal = "normal"
Inpaint = "inpaint"
Depth = "depth"
class ModelFormat(str, Enum):
"""Storage format of model."""
Diffusers = "diffusers"
Checkpoint = "checkpoint"
LyCORIS = "lycoris"
ONNX = "onnx"
Olive = "olive"
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
InvokeAI = "invokeai"
class SchedulerPredictionType(str, Enum):
"""Scheduler prediction type."""
Epsilon = "epsilon"
VPrediction = "v_prediction"
Sample = "sample"
class ModelRepoVariant(str, Enum):
"""Various hugging face variants on the diffusers format."""
Default = "" # model files without "fp16" or other qualifier
FP16 = "fp16"
FP32 = "fp32"
ONNX = "onnx"
OpenVINO = "openvino"
Flax = "flax"
class ModelSourceType(str, Enum):
"""Model source type."""
Path = "path"
Url = "url"
HFRepoID = "hf_repo_id"
DEFAULTS_PRECISION = Literal["fp16", "fp32"]
class MainModelDefaultSettings(BaseModel):
vae: str | None = Field(default=None, description="Default VAE for this model (model key)")
vae_precision: DEFAULTS_PRECISION | None = Field(default=None, description="Default VAE precision for this model")
scheduler: SCHEDULER_NAME_VALUES | None = Field(default=None, description="Default scheduler for this model")
steps: int | None = Field(default=None, gt=0, description="Default number of steps for this model")
cfg_scale: float | None = Field(default=None, ge=1, description="Default CFG Scale for this model")
cfg_rescale_multiplier: float | None = Field(
default=None, ge=0, lt=1, description="Default CFG Rescale Multiplier for this model"
)
width: int | None = Field(default=None, multiple_of=8, ge=64, description="Default width for this model")
height: int | None = Field(default=None, multiple_of=8, ge=64, description="Default height for this model")
model_config = ConfigDict(extra="forbid")
class ControlAdapterDefaultSettings(BaseModel):
# This could be narrowed to controlnet processor nodes, but they change. Leaving this a string is safer.
preprocessor: str | None
model_config = ConfigDict(extra="forbid")
class ModelConfigBase(BaseModel):
"""Base class for model configuration information."""
key: str = Field(description="A unique key for this model.", default_factory=uuid_string)
hash: str = Field(description="The hash of the model file(s).")
path: str = Field(
description="Path to the model on the filesystem. Relative paths are relative to the Invoke root directory."
)
name: str = Field(description="Name of the model.")
base: BaseModelType = Field(description="The base model.")
description: Optional[str] = Field(description="Model description", default=None)
source: str = Field(description="The original source of the model (path, URL or repo_id).")
source_type: ModelSourceType = Field(description="The type of source")
source_api_response: Optional[str] = Field(
description="The original API response from the source, as stringified JSON.", default=None
)
cover_image: Optional[str] = Field(description="Url for image to preview model", default=None)
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
schema["required"].extend(["key", "type", "format"])
model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra)
class CheckpointConfigBase(ModelConfigBase):
"""Model config for checkpoint-style models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
config_path: str = Field(description="path to the checkpoint model config file")
converted_at: Optional[float] = Field(
description="When this model was last converted to diffusers", default_factory=time.time
)
class DiffusersConfigBase(ModelConfigBase):
"""Model config for diffusers-style models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.Default
class LoRAConfigBase(ModelConfigBase):
type: Literal[ModelType.LoRA] = ModelType.LoRA
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
class LoRALyCORISConfig(LoRAConfigBase):
"""Model config for LoRA/Lycoris models."""
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.LyCORIS.value}")
class LoRADiffusersConfig(LoRAConfigBase):
"""Model config for LoRA/Diffusers models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.Diffusers.value}")
class VAECheckpointConfig(CheckpointConfigBase):
"""Model config for standalone VAE models."""
type: Literal[ModelType.VAE] = ModelType.VAE
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Checkpoint.value}")
class VAEDiffusersConfig(ModelConfigBase):
"""Model config for standalone VAE models (diffusers version)."""
type: Literal[ModelType.VAE] = ModelType.VAE
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Diffusers.value}")
class ControlAdapterConfigBase(BaseModel):
default_settings: Optional[ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
)
class ControlNetDiffusersConfig(DiffusersConfigBase, ControlAdapterConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Diffusers.value}")
class ControlNetCheckpointConfig(CheckpointConfigBase, ControlAdapterConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Checkpoint.value}")
class TextualInversionFileConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFile] = ModelFormat.EmbeddingFile
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFile.value}")
class TextualInversionFolderConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFolder] = ModelFormat.EmbeddingFolder
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFolder.value}")
class MainConfigBase(ModelConfigBase):
type: Literal[ModelType.Main] = ModelType.Main
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
variant: ModelVariantType = ModelVariantType.Normal
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
"""Model config for main checkpoint models."""
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}")
class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
"""Model config for main diffusers models."""
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
class IPAdapterBaseConfig(ModelConfigBase):
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
class IPAdapterInvokeAIConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter diffusers format models."""
image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}")
class IPAdapterCheckpointConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter checkpoint format models."""
format: Literal[ModelFormat.Checkpoint]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.Checkpoint.value}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision."""
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPVision.value}.{ModelFormat.Diffusers.value}")
class T2IAdapterConfig(DiffusersConfigBase, ControlAdapterConfigBase):
"""Model config for T2I."""
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T2IAdapter.value}.{ModelFormat.Diffusers.value}")
class SpandrelImageToImageConfig(ModelConfigBase):
"""Model config for Spandrel Image to Image models."""
type: Literal[ModelType.SpandrelImageToImage] = ModelType.SpandrelImageToImage
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.SpandrelImageToImage.value}.{ModelFormat.Checkpoint.value}")
def get_model_discriminator_value(v: Any) -> str:
"""
Computes the discriminator value for a model config.
https://docs.pydantic.dev/latest/concepts/unions/#discriminated-unions-with-callable-discriminator
"""
format_ = None
type_ = None
if isinstance(v, dict):
format_ = v.get("format")
if isinstance(format_, Enum):
format_ = format_.value
type_ = v.get("type")
if isinstance(type_, Enum):
type_ = type_.value
else:
format_ = v.format.value
type_ = v.type.value
v = f"{type_}.{format_}"
return v
AnyModelConfig = Annotated[
Union[
Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()],
Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()],
Annotated[VAEDiffusersConfig, VAEDiffusersConfig.get_tag()],
Annotated[VAECheckpointConfig, VAECheckpointConfig.get_tag()],
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterInvokeAIConfig, IPAdapterInvokeAIConfig.get_tag()],
Annotated[IPAdapterCheckpointConfig, IPAdapterCheckpointConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[SpandrelImageToImageConfig, SpandrelImageToImageConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
AnyDefaultSettings: TypeAlias = Union[MainModelDefaultSettings, ControlAdapterDefaultSettings]
class ModelConfigFactory(object):
"""Class for parsing config dicts into StableDiffusion Config obects."""
@classmethod
def make_config(
cls,
model_data: Union[Dict[str, Any], AnyModelConfig],
key: Optional[str] = None,
dest_class: Optional[Type[ModelConfigBase]] = None,
timestamp: Optional[float] = None,
) -> AnyModelConfig:
"""
Return the appropriate config object from raw dict values.
:param model_data: A raw dict corresponding the obect fields to be
parsed into a ModelConfigBase obect (or descendent), or a ModelConfigBase
object, which will be passed through unchanged.
:param dest_class: The config class to be returned. If not provided, will
be selected automatically.
"""
model: Optional[ModelConfigBase] = None
if isinstance(model_data, ModelConfigBase):
model = model_data
elif dest_class:
model = dest_class.model_validate(model_data)
else:
# mypy doesn't typecheck TypeAdapters well?
model = AnyModelConfigValidator.validate_python(model_data) # type: ignore
assert model is not None
if key:
model.key = key
if isinstance(model, CheckpointConfigBase) and timestamp is not None:
model.converted_at = timestamp
if model:
validate_hash(model.hash)
return model # type: ignore