mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
126 lines
5.5 KiB
Python
126 lines
5.5 KiB
Python
import bitsandbytes as bnb
|
|
import torch
|
|
|
|
# This file contains utils for working with models that use bitsandbytes LLM.int8() quantization.
|
|
# The utils in this file are partially inspired by:
|
|
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
|
|
|
|
|
|
# NOTE(ryand): All of the custom state_dict manipulation logic in this file is pretty hacky. This could be made much
|
|
# cleaner by re-implementing bnb.nn.Linear8bitLt with proper use of buffers and less magic. But, for now, we try to
|
|
# stick close to the bitsandbytes classes to make interoperability easier with other models that might use bitsandbytes.
|
|
|
|
|
|
class InvokeInt8Params(bnb.nn.Int8Params):
|
|
"""We override cuda() to avoid re-quantizing the weights in the following cases:
|
|
- We loaded quantized weights from a state_dict on the cpu, and then moved the model to the gpu.
|
|
- We are moving the model back-and-forth between the cpu and gpu.
|
|
"""
|
|
|
|
def cuda(self, device):
|
|
if self.has_fp16_weights:
|
|
return super().cuda(device)
|
|
elif self.CB is not None and self.SCB is not None:
|
|
self.data = self.data.cuda()
|
|
self.CB = self.CB.cuda()
|
|
self.SCB = self.SCB.cuda()
|
|
else:
|
|
# we store the 8-bit rows-major weight
|
|
# we convert this weight to the turning/ampere weight during the first inference pass
|
|
B = self.data.contiguous().half().cuda(device)
|
|
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
|
|
del CBt
|
|
del SCBt
|
|
self.data = CB
|
|
self.CB = CB
|
|
self.SCB = SCB
|
|
|
|
return self
|
|
|
|
|
|
class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
|
|
def _load_from_state_dict(
|
|
self,
|
|
state_dict: dict[str, torch.Tensor],
|
|
prefix: str,
|
|
local_metadata,
|
|
strict,
|
|
missing_keys,
|
|
unexpected_keys,
|
|
error_msgs,
|
|
):
|
|
weight = state_dict.pop(prefix + "weight")
|
|
bias = state_dict.pop(prefix + "bias", None)
|
|
|
|
# See `bnb.nn.Linear8bitLt._save_to_state_dict()` for the serialization logic of SCB and weight_format.
|
|
scb = state_dict.pop(prefix + "SCB", None)
|
|
# weight_format is unused, but we pop it so we can validate that there are no unexpected keys.
|
|
_weight_format = state_dict.pop(prefix + "weight_format", None)
|
|
|
|
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
|
|
# rather than raising an exception to correctly implement this API.
|
|
assert len(state_dict) == 0
|
|
|
|
if scb is not None:
|
|
# We are loading a pre-quantized state dict.
|
|
self.weight = InvokeInt8Params(
|
|
data=weight,
|
|
requires_grad=self.weight.requires_grad,
|
|
has_fp16_weights=False,
|
|
# Note: After quantization, CB is the same as weight.
|
|
CB=weight,
|
|
SCB=scb,
|
|
)
|
|
self.bias = bias if bias is None else torch.nn.Parameter(bias)
|
|
else:
|
|
# We are loading a non-quantized state dict.
|
|
|
|
# We could simply call the `super()._load_from_state_dict()` method here, but then we wouldn't be able to
|
|
# load from a state_dict into a model on the "meta" device. Attempting to load into a model on the "meta"
|
|
# device requires setting `assign=True`, doing this with the default `super()._load_from_state_dict()`
|
|
# implementation causes `Params4Bit` to be replaced by a `torch.nn.Parameter`. By initializing a new
|
|
# `Params4bit` object, we work around this issue. It's a bit hacky, but it gets the job done.
|
|
self.weight = InvokeInt8Params(
|
|
data=weight,
|
|
requires_grad=self.weight.requires_grad,
|
|
has_fp16_weights=False,
|
|
CB=None,
|
|
SCB=None,
|
|
)
|
|
self.bias = bias if bias is None else torch.nn.Parameter(bias)
|
|
|
|
|
|
def _convert_linear_layers_to_llm_8bit(
|
|
module: torch.nn.Module, ignore_modules: set[str], outlier_threshold: float, prefix: str = ""
|
|
) -> None:
|
|
"""Convert all linear layers in the module to bnb.nn.Linear8bitLt layers."""
|
|
for name, child in module.named_children():
|
|
fullname = f"{prefix}.{name}" if prefix else name
|
|
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
|
|
has_bias = child.bias is not None
|
|
replacement = InvokeLinear8bitLt(
|
|
child.in_features,
|
|
child.out_features,
|
|
bias=has_bias,
|
|
has_fp16_weights=False,
|
|
threshold=outlier_threshold,
|
|
)
|
|
replacement.weight.data = child.weight.data
|
|
if has_bias:
|
|
replacement.bias.data = child.bias.data
|
|
replacement.requires_grad_(False)
|
|
module.__setattr__(name, replacement)
|
|
else:
|
|
_convert_linear_layers_to_llm_8bit(
|
|
child, ignore_modules, outlier_threshold=outlier_threshold, prefix=fullname
|
|
)
|
|
|
|
|
|
def quantize_model_llm_int8(model: torch.nn.Module, modules_to_not_convert: set[str], outlier_threshold: float = 6.0):
|
|
"""Apply bitsandbytes LLM.8bit() quantization to the model."""
|
|
_convert_linear_layers_to_llm_8bit(
|
|
module=model, ignore_modules=modules_to_not_convert, outlier_threshold=outlier_threshold
|
|
)
|
|
|
|
return model
|