mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
772 lines
27 KiB
Python
772 lines
27 KiB
Python
"""This module manages the InvokeAI `models.yaml` file, mapping
|
|
symbolic diffusers model names to the paths and repo_ids used
|
|
by the underlying `from_pretrained()` call.
|
|
|
|
For fetching models, use manager.get_model('symbolic name'). This will
|
|
return a ModelInfo object that contains the following attributes:
|
|
|
|
* context -- a context manager Generator that loads and locks the
|
|
model into GPU VRAM and returns the model for use.
|
|
See below for usage.
|
|
* name -- symbolic name of the model
|
|
* type -- SubModelType of the model
|
|
* hash -- unique hash for the model
|
|
* location -- path or repo_id of the model
|
|
* revision -- revision of the model if coming from a repo id,
|
|
e.g. 'fp16'
|
|
* precision -- torch precision of the model
|
|
|
|
Typical usage:
|
|
|
|
from invokeai.backend import ModelManager
|
|
|
|
manager = ModelManager(
|
|
config='./configs/models.yaml',
|
|
max_cache_size=8
|
|
) # gigabytes
|
|
|
|
model_info = manager.get_model('stable-diffusion-1.5', SubModelType.Diffusers)
|
|
with model_info.context as my_model:
|
|
my_model.latents_from_embeddings(...)
|
|
|
|
The manager uses the underlying ModelCache class to keep
|
|
frequently-used models in RAM and move them into GPU as needed for
|
|
generation operations. The optional `max_cache_size` argument
|
|
indicates the maximum size the cache can grow to, in gigabytes. The
|
|
underlying ModelCache object can be accessed using the manager's "cache"
|
|
attribute.
|
|
|
|
Because the model manager can return multiple different types of
|
|
models, you may wish to add additional type checking on the class
|
|
of model returned. To do this, provide the option `model_type`
|
|
parameter:
|
|
|
|
model_info = manager.get_model(
|
|
'clip-tokenizer',
|
|
model_type=SubModelType.Tokenizer
|
|
)
|
|
|
|
This will raise an InvalidModelError if the format defined in the
|
|
config file doesn't match the requested model type.
|
|
|
|
MODELS.YAML
|
|
|
|
The general format of a models.yaml section is:
|
|
|
|
type-of-model/name-of-model:
|
|
path: /path/to/local/file/or/directory
|
|
description: a description
|
|
format: folder|ckpt|safetensors|pt
|
|
base: SD-1|SD-2
|
|
subfolder: subfolder-name
|
|
|
|
The type of model is given in the stanza key, and is one of
|
|
{diffusers, ckpt, vae, text_encoder, tokenizer, unet, scheduler,
|
|
safety_checker, feature_extractor, lora, textual_inversion,
|
|
controlnet}, and correspond to items in the SubModelType enum defined
|
|
in model_cache.py
|
|
|
|
The format indicates whether the model is organized as a folder with
|
|
model subdirectories, or is contained in a single checkpoint or
|
|
safetensors file.
|
|
|
|
One, but not both, of repo_id and path are provided. repo_id is the
|
|
HuggingFace repository ID of the model, and path points to the file or
|
|
directory on disk.
|
|
|
|
If subfolder is provided, then the model exists in a subdirectory of
|
|
the main model. These are usually named after the model type, such as
|
|
"unet".
|
|
|
|
This example summarizes the two ways of getting a non-diffuser model:
|
|
|
|
text_encoder/clip-test-1:
|
|
format: folder
|
|
path: /path/to/folder
|
|
description: Returns standalone CLIPTextModel
|
|
|
|
text_encoder/clip-test-2:
|
|
format: folder
|
|
repo_id: /path/to/folder
|
|
subfolder: text_encoder
|
|
description: Returns the text_encoder in the subfolder of the diffusers model (just the encoder in RAM)
|
|
|
|
SUBMODELS:
|
|
|
|
It is also possible to fetch an isolated submodel from a diffusers
|
|
model. Use the `submodel` parameter to select which part:
|
|
|
|
vae = manager.get_model('stable-diffusion-1.5',submodel=SubModelType.Vae)
|
|
with vae.context as my_vae:
|
|
print(type(my_vae))
|
|
# "AutoencoderKL"
|
|
|
|
DIRECTORY_SCANNING:
|
|
|
|
Loras, textual_inversion and controlnet models are usually not listed
|
|
explicitly in models.yaml, but are added to the in-memory data
|
|
structure at initialization time by scanning the models directory. The
|
|
in-memory data structure can be resynchronized by calling
|
|
`manager.scan_models_directory`.
|
|
|
|
DISAMBIGUATION:
|
|
|
|
You may wish to use the same name for a related family of models. To
|
|
do this, disambiguate the stanza key with the model and and format
|
|
separated by "/". Example:
|
|
|
|
tokenizer/clip-large:
|
|
format: tokenizer
|
|
path: /path/to/folder
|
|
description: Returns standalone tokenizer
|
|
|
|
text_encoder/clip-large:
|
|
format: text_encoder
|
|
path: /path/to/folder
|
|
description: Returns standalone text encoder
|
|
|
|
You can now use the `model_type` argument to indicate which model you
|
|
want:
|
|
|
|
tokenizer = mgr.get('clip-large',model_type=SubModelType.Tokenizer)
|
|
encoder = mgr.get('clip-large',model_type=SubModelType.TextEncoder)
|
|
|
|
OTHER FUNCTIONS:
|
|
|
|
Other methods provided by ModelManager support importing, editing,
|
|
converting and deleting models.
|
|
|
|
IMPORTANT CHANGES AND LIMITATIONS SINCE 2.3:
|
|
|
|
1. Only local paths are supported. Repo_ids are no longer accepted. This
|
|
simplifies the logic.
|
|
|
|
2. VAEs can't be swapped in and out at load time. They must be baked
|
|
into the model when downloaded or converted.
|
|
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
import textwrap
|
|
from dataclasses import dataclass
|
|
from packaging import version
|
|
from pathlib import Path
|
|
from typing import Dict, Optional, List, Tuple, Union, types
|
|
from shutil import rmtree
|
|
|
|
import torch
|
|
from huggingface_hub import scan_cache_dir
|
|
from omegaconf import OmegaConf
|
|
from omegaconf.dictconfig import DictConfig
|
|
|
|
from pydantic import BaseModel
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.backend.util import CUDA_DEVICE, download_with_resume
|
|
from .model_cache import ModelCache, ModelLocker
|
|
from .models import BaseModelType, ModelType, SubModelType, MODEL_CLASSES
|
|
|
|
# We are only starting to number the config file with release 3.
|
|
# The config file version doesn't have to start at release version, but it will help
|
|
# reduce confusion.
|
|
CONFIG_FILE_VERSION='3.0.0'
|
|
|
|
@dataclass
|
|
class ModelInfo():
|
|
context: ModelLocker
|
|
name: str
|
|
base_model: BaseModelType
|
|
type: ModelType
|
|
hash: str
|
|
location: Union[Path, str]
|
|
precision: torch.dtype
|
|
revision: str = None
|
|
_cache: ModelCache = None
|
|
|
|
def __enter__(self):
|
|
return self.context.__enter__()
|
|
|
|
def __exit__(self,*args, **kwargs):
|
|
self.context.__exit__(*args, **kwargs)
|
|
|
|
class InvalidModelError(Exception):
|
|
"Raised when an invalid model is requested"
|
|
pass
|
|
|
|
MAX_CACHE_SIZE = 6.0 # GB
|
|
|
|
|
|
# layout of the models directory:
|
|
# models
|
|
# ├── SD-1
|
|
# │ ├── controlnet
|
|
# │ ├── lora
|
|
# │ ├── diffusers
|
|
# │ └── textual_inversion
|
|
# ├── SD-2
|
|
# │ ├── controlnet
|
|
# │ ├── lora
|
|
# │ ├── diffusers
|
|
# │ └── textual_inversion
|
|
# └── support
|
|
# ├── codeformer
|
|
# ├── gfpgan
|
|
# └── realesrgan
|
|
|
|
|
|
class ConfigMeta(BaseModel):
|
|
version: str
|
|
|
|
class ModelManager(object):
|
|
"""
|
|
High-level interface to model management.
|
|
"""
|
|
|
|
logger: types.ModuleType = logger
|
|
|
|
# TODO:
|
|
def _convert_2_3_models(self, config: DictConfig):
|
|
for model_name, model_config in config.items():
|
|
if model_config["format"] == "diffusers":
|
|
pass
|
|
elif model_config["format"] == "ckpt":
|
|
|
|
if any(model_config["config"].endswith(file) for file in {
|
|
"v1-finetune.yaml",
|
|
"v1-finetune_style.yaml",
|
|
"v1-inference.yaml",
|
|
"v1-inpainting-inference.yaml",
|
|
"v1-m1-finetune.yaml",
|
|
}):
|
|
# copy as as sd1.5
|
|
pass
|
|
|
|
# ~99% accurate should be
|
|
elif model_config["config"].endswith("v2-inference-v.yaml"):
|
|
# copy as sd 2.x (768)
|
|
pass
|
|
|
|
# for real don't know how accurate it
|
|
elif model_config["config"].endswith("v2-inference.yaml"):
|
|
# copy as sd 2.x-base (512)
|
|
pass
|
|
|
|
else:
|
|
# TODO:
|
|
raise Exception("Unknown model")
|
|
|
|
|
|
def __init__(
|
|
self,
|
|
config: Union[Path, DictConfig, str],
|
|
device_type: torch.device = CUDA_DEVICE,
|
|
precision: torch.dtype = torch.float16,
|
|
max_cache_size=MAX_CACHE_SIZE,
|
|
sequential_offload=False,
|
|
logger: types.ModuleType = logger,
|
|
):
|
|
"""
|
|
Initialize with the path to the models.yaml config file.
|
|
Optional parameters are the torch device type, precision, max_models,
|
|
and sequential_offload boolean. Note that the default device
|
|
type and precision are set up for a CUDA system running at half precision.
|
|
"""
|
|
|
|
self.config_path = None
|
|
if isinstance(config, (str, Path)):
|
|
self.config_path = Path(config)
|
|
config = OmegaConf.load(self.config_path)
|
|
|
|
elif not isinstance(config, DictConfig):
|
|
raise ValueError('config argument must be an OmegaConf object, a Path or a string')
|
|
|
|
#if "__meta__" not in config:
|
|
# config = self._convert_2_3_models(config)
|
|
|
|
config_meta = ConfigMeta(**config.pop("__metadata__")) # TODO: naming
|
|
# TODO: metadata not found
|
|
|
|
self.models = dict()
|
|
for model_key, model_config in config.items():
|
|
model_name, base_model, model_type = self.parse_key(model_key)
|
|
model_class = MODEL_CLASSES[base_model][model_type]
|
|
self.models[model_key] = model_class.build_config(**model_config)
|
|
|
|
# check config version number and update on disk/RAM if necessary
|
|
self.globals = InvokeAIAppConfig.get_config()
|
|
self.logger = logger
|
|
self.cache = ModelCache(
|
|
max_cache_size=max_cache_size,
|
|
execution_device = device_type,
|
|
precision = precision,
|
|
sequential_offload = sequential_offload,
|
|
logger = logger,
|
|
)
|
|
self.cache_keys = dict()
|
|
|
|
# add controlnet, lora and textual_inversion models from disk
|
|
self.scan_models_directory()
|
|
|
|
def model_exists(
|
|
self,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
) -> bool:
|
|
"""
|
|
Given a model name, returns True if it is a valid
|
|
identifier.
|
|
"""
|
|
model_key = self.create_key(model_name, base_model, model_type)
|
|
return model_key in self.models
|
|
|
|
@classmethod
|
|
def create_key(
|
|
cls,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
) -> str:
|
|
return f"{base_model}/{model_type}/{model_name}"
|
|
|
|
def parse_key(self, model_key: str) -> Tuple[str, BaseModelType, ModelType]:
|
|
base_model_str, model_type_str, model_name = model_key.split('/', 2)
|
|
try:
|
|
model_type = ModelType(model_type_str)
|
|
except:
|
|
raise Exception(f"Unknown model type: {model_type_str}")
|
|
|
|
try:
|
|
base_model = BaseModelType(base_model_str)
|
|
except:
|
|
raise Exception(f"Unknown base model: {base_model_str}")
|
|
|
|
return (model_name, base_model, model_type)
|
|
|
|
def get_model(
|
|
self,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
submodel_type: Optional[SubModelType] = None
|
|
):
|
|
"""Given a model named identified in models.yaml, return
|
|
an ModelInfo object describing it.
|
|
:param model_name: symbolic name of the model in models.yaml
|
|
:param model_type: ModelType enum indicating the type of model to return
|
|
:param submode_typel: an ModelType enum indicating the portion of
|
|
the model to retrieve (e.g. ModelType.Vae)
|
|
|
|
If not provided, the model_type will be read from the `format` field
|
|
of the corresponding stanza. If provided, the model_type will be used
|
|
to disambiguate stanzas in the configuration file. The default is to
|
|
assume a diffusers pipeline. The behavior is illustrated here:
|
|
|
|
[models.yaml]
|
|
diffusers/test1:
|
|
repo_id: foo/bar
|
|
description: Typical diffusers pipeline
|
|
|
|
lora/test1:
|
|
repo_id: /tmp/loras/test1.safetensors
|
|
description: Typical lora file
|
|
|
|
test1_pipeline = mgr.get_model('test1')
|
|
# returns a StableDiffusionGeneratorPipeline
|
|
|
|
test1_vae1 = mgr.get_model('test1', submodel=ModelType.Vae)
|
|
# returns the VAE part of a diffusers model as an AutoencoderKL
|
|
|
|
test1_vae2 = mgr.get_model('test1', model_type=ModelType.Diffusers, submodel=ModelType.Vae)
|
|
# does the same thing as the previous statement. Note that model_type
|
|
# is for the parent model, and submodel is for the part
|
|
|
|
test1_lora = mgr.get_model('test1', model_type=ModelType.Lora)
|
|
# returns a LoRA embed (as a 'dict' of tensors)
|
|
|
|
test1_encoder = mgr.get_modelI('test1', model_type=ModelType.TextEncoder)
|
|
# raises an InvalidModelError
|
|
|
|
"""
|
|
model_class = MODEL_CLASSES[base_model][model_type]
|
|
model_key = self.create_key(model_name, base_model, model_type)
|
|
|
|
# if model not found try to find it (maybe file just pasted)
|
|
if model_key not in self.models:
|
|
# TODO: find by mask or try rescan?
|
|
path_mask = f"/models/{base_model}/{model_type}/{model_name}*"
|
|
if False: # model_path = next(find_by_mask(path_mask)):
|
|
model_path = None # TODO:
|
|
model_config = model_class.build_config(
|
|
path=model_path,
|
|
)
|
|
self.models[model_key] = model_config
|
|
else:
|
|
raise Exception(f"Model not found - {model_key}")
|
|
|
|
# if it known model check that target path exists (if manualy deleted)
|
|
else:
|
|
# logic repeated twice(in rescan too) any way to optimize?
|
|
if not os.path.exists(self.models[model_key].path):
|
|
if model_class.save_to_config:
|
|
self.models[model_key].error = ModelError.NotFound
|
|
raise Exception(f"Files for model \"{model_key}\" not found")
|
|
|
|
else:
|
|
self.models.pop(model_key, None)
|
|
raise Exception(f"Model not found - {model_key}")
|
|
|
|
# reset model errors?
|
|
|
|
|
|
|
|
model_config = self.models[model_key]
|
|
|
|
# /models/{base_model}/{model_type}/{name}.ckpt or .safentesors
|
|
# /models/{base_model}/{model_type}/{name}/
|
|
model_path = model_config.path
|
|
|
|
# vae/movq override
|
|
# TODO:
|
|
if submodel is not None and submodel in model_config:
|
|
model_path = model_config[submodel]
|
|
model_type = submodel
|
|
submodel = None
|
|
|
|
dst_convert_path = None # TODO:
|
|
model_path = model_class.convert_if_required(
|
|
model_path,
|
|
dst_convert_path,
|
|
model_config,
|
|
)
|
|
|
|
model_context = self.cache.get_model(
|
|
model_path,
|
|
model_class,
|
|
submodel_type,
|
|
)
|
|
|
|
hash = "<NO_HASH>" # TODO:
|
|
|
|
return ModelInfo(
|
|
context = model_context,
|
|
name = model_name,
|
|
base_model = base_model,
|
|
type = submodel_type or model_type,
|
|
hash = hash,
|
|
location = model_path, # TODO:
|
|
precision = self.cache.precision,
|
|
_cache = self.cache,
|
|
)
|
|
|
|
def default_model(self) -> Optional[Tuple[str, BaseModelType, ModelType]]:
|
|
"""
|
|
Returns the name of the default model, or None
|
|
if none is defined.
|
|
"""
|
|
for model_key, model_config in self.models.items():
|
|
if model_config.default:
|
|
return self.parse_key(model_key)
|
|
|
|
for model_key, _ in self.models.items():
|
|
return self.parse_key(model_key)
|
|
else:
|
|
return None # TODO: or redo as (None, None, None)
|
|
|
|
def set_default_model(
|
|
self,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
) -> None:
|
|
"""
|
|
Set the default model. The change will not take
|
|
effect until you call model_manager.commit()
|
|
"""
|
|
|
|
model_key = self.model_key(model_name, base_model, model_type)
|
|
if model_key not in self.models:
|
|
raise Exception(f"Unknown model: {model_key}")
|
|
|
|
for cur_model_key, config in self.models.items():
|
|
config.default = cur_model_key == model_key
|
|
|
|
def model_info(
|
|
self,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
) -> dict:
|
|
"""
|
|
Given a model name returns the OmegaConf (dict-like) object describing it.
|
|
"""
|
|
model_key = self.create_key(model_name, base_model, model_type)
|
|
if model_key in self.models:
|
|
return self.models[model_key].dict(exclude_defaults=True)
|
|
else:
|
|
return None # TODO: None or empty dict on not found
|
|
|
|
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
|
|
"""
|
|
Return a list of (str, BaseModelType, ModelType) corresponding to all models
|
|
known to the configuration.
|
|
"""
|
|
return [(self.parse_key(x)) for x in self.models.keys()]
|
|
|
|
def list_models(
|
|
self,
|
|
base_model: Optional[BaseModelType] = None,
|
|
model_type: Optional[ModelType] = None,
|
|
) -> Dict[str, Dict[str, str]]:
|
|
"""
|
|
Return a dict of models, in format [base_model][model_type][model_name]
|
|
|
|
Please use model_manager.models() to get all the model names,
|
|
model_manager.model_info('model-name') to get the stanza for the model
|
|
named 'model-name', and model_manager.config to get the full OmegaConf
|
|
object derived from models.yaml
|
|
"""
|
|
assert not(model_type is not None and base_model is None), "model_type must be provided with base_model"
|
|
|
|
models = dict()
|
|
for model_key in sorted(self.models, key=str.casefold):
|
|
model_config = self.models[model_key]
|
|
|
|
cur_model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
|
|
if base_model is not None and cur_base_model != base_model:
|
|
continue
|
|
if model_type is not None and cur_model_type != model_type:
|
|
continue
|
|
|
|
if cur_base_model not in models:
|
|
models[cur_base_model] = dict()
|
|
if cur_model_type not in models[cur_base_model]:
|
|
models[cur_base_model][cur_model_type] = dict()
|
|
|
|
models[cur_base_model][cur_model_type][cur_model_name] = dict(
|
|
**model_config.dict(exclude_defaults=True),
|
|
name=cur_model_name,
|
|
base_model=cur_base_model,
|
|
type=cur_model_type,
|
|
)
|
|
|
|
return models
|
|
|
|
def print_models(self) -> None:
|
|
"""
|
|
Print a table of models, their descriptions
|
|
"""
|
|
# TODO: redo
|
|
for model_type, model_dict in self.list_models().items():
|
|
for model_name, model_info in model_dict.items():
|
|
line = f'{model_info["name"]:25s} {model_info["type"]:10s} {model_info["description"]}'
|
|
print(line)
|
|
|
|
def del_model(
|
|
self,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
delete_files: bool = False,
|
|
):
|
|
"""
|
|
Delete the named model.
|
|
"""
|
|
raise Exception("TODO: del_model") # TODO: redo
|
|
model_key = self.create_key(model_name, base_model, model_type)
|
|
model_cfg = self.models.pop(model_key, None)
|
|
|
|
if model_cfg is None:
|
|
self.logger.error(
|
|
f"Unknown model {model_key}"
|
|
)
|
|
return
|
|
|
|
# TODO: some legacy?
|
|
#if model_name in self.stack:
|
|
# self.stack.remove(model_name)
|
|
|
|
if delete_files:
|
|
repo_id = model_cfg.get("repo_id", None)
|
|
path = self._abs_path(model_cfg.get("path", None))
|
|
weights = self._abs_path(model_cfg.get("weights", None))
|
|
if "weights" in model_cfg:
|
|
weights = self._abs_path(model_cfg["weights"])
|
|
self.logger.info(f"Deleting file {weights}")
|
|
Path(weights).unlink(missing_ok=True)
|
|
|
|
elif "path" in model_cfg:
|
|
path = self._abs_path(model_cfg["path"])
|
|
self.logger.info(f"Deleting directory {path}")
|
|
rmtree(path, ignore_errors=True)
|
|
|
|
elif "repo_id" in model_cfg:
|
|
repo_id = model_cfg["repo_id"]
|
|
self.logger.info(f"Deleting the cached model directory for {repo_id}")
|
|
self._delete_model_from_cache(repo_id)
|
|
|
|
def add_model(
|
|
self,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
model_attributes: dict,
|
|
clobber: bool = False,
|
|
) -> None:
|
|
"""
|
|
Update the named model with a dictionary of attributes. Will fail with an
|
|
assertion error if the name already exists. Pass clobber=True to overwrite.
|
|
On a successful update, the config will be changed in memory and the
|
|
method will return True. Will fail with an assertion error if provided
|
|
attributes are incorrect or the model name is missing.
|
|
"""
|
|
|
|
model_class = MODEL_CLASSES[base_model][model_type]
|
|
model_config = model_class.build_config(**model_attributes)
|
|
model_key = self.create_key(model_name, base_model, model_type)
|
|
|
|
assert (
|
|
clobber or model_key not in self.models
|
|
), f'attempt to overwrite existing model definition "{model_key}"'
|
|
|
|
self.models[model_key] = model_config
|
|
|
|
if clobber and model_key in self.cache_keys:
|
|
# TODO:
|
|
self.cache.uncache_model(self.cache_keys[model_key])
|
|
del self.cache_keys[model_key]
|
|
|
|
def search_models(self, search_folder):
|
|
self.logger.info(f"Finding Models In: {search_folder}")
|
|
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
|
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
|
|
|
|
ckpt_files = [x for x in models_folder_ckpt if x.is_file()]
|
|
safetensor_files = [x for x in models_folder_safetensors if x.is_file()]
|
|
|
|
files = ckpt_files + safetensor_files
|
|
|
|
found_models = []
|
|
for file in files:
|
|
location = str(file.resolve()).replace("\\", "/")
|
|
if (
|
|
"model.safetensors" not in location
|
|
and "diffusion_pytorch_model.safetensors" not in location
|
|
):
|
|
found_models.append({"name": file.stem, "location": location})
|
|
|
|
return search_folder, found_models
|
|
|
|
def commit(self, conf_file: Path=None) -> None:
|
|
"""
|
|
Write current configuration out to the indicated file.
|
|
"""
|
|
data_to_save = dict()
|
|
for model_key, model_config in self.models.items():
|
|
model_name, base_model, model_type = self.parse_key(model_key)
|
|
model_class = MODEL_CLASSES[base_model][model_type]
|
|
if model_class.save_to_config:
|
|
# TODO: or exclude_unset better fits here?
|
|
data_to_save[model_key] = model_config.dict(exclude_defaults=True)
|
|
|
|
yaml_str = OmegaConf.to_yaml(data_to_save)
|
|
config_file_path = conf_file or self.config_path
|
|
assert config_file_path is not None,'no config file path to write to'
|
|
config_file_path = self.globals.root_dir / config_file_path
|
|
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
|
|
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
|
outfile.write(self.preamble())
|
|
outfile.write(yaml_str)
|
|
os.replace(tmpfile, config_file_path)
|
|
|
|
def preamble(self) -> str:
|
|
"""
|
|
Returns the preamble for the config file.
|
|
"""
|
|
return textwrap.dedent(
|
|
"""\
|
|
# This file describes the alternative machine learning models
|
|
# available to InvokeAI script.
|
|
#
|
|
# To add a new model, follow the examples below. Each
|
|
# model requires a model config file, a weights file,
|
|
# and the width and height of the images it
|
|
# was trained on.
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _delete_model_from_cache(cls,repo_id):
|
|
cache_info = scan_cache_dir(InvokeAIAppConfig.get_config().cache_dir)
|
|
|
|
# I'm sure there is a way to do this with comprehensions
|
|
# but the code quickly became incomprehensible!
|
|
hashes_to_delete = set()
|
|
for repo in cache_info.repos:
|
|
if repo.repo_id == repo_id:
|
|
for revision in repo.revisions:
|
|
hashes_to_delete.add(revision.commit_hash)
|
|
strategy = cache_info.delete_revisions(*hashes_to_delete)
|
|
cls.logger.warning(
|
|
f"Deletion of this model is expected to free {strategy.expected_freed_size_str}"
|
|
)
|
|
strategy.execute()
|
|
|
|
@staticmethod
|
|
def _abs_path(path: str | Path) -> Path:
|
|
globals = InvokeAIAppConfig.get_config()
|
|
if path is None or Path(path).is_absolute():
|
|
return path
|
|
return Path(globals.root_dir, path).resolve()
|
|
|
|
# This is not the same as global_resolve_path(), which prepends
|
|
# Globals.root.
|
|
def _resolve_path(
|
|
self, source: Union[str, Path], dest_directory: str
|
|
) -> Optional[Path]:
|
|
resolved_path = None
|
|
if str(source).startswith(("http:", "https:", "ftp:")):
|
|
dest_directory = self.globals.root_dir / dest_directory
|
|
dest_directory.mkdir(parents=True, exist_ok=True)
|
|
resolved_path = download_with_resume(str(source), dest_directory)
|
|
else:
|
|
resolved_path = self.globals.root_dir / source
|
|
return resolved_path
|
|
|
|
def scan_models_directory(self):
|
|
loaded_files = set()
|
|
|
|
for model_key, model_config in list(self.models.items()):
|
|
model_name, base_model, model_type = self.parse_key(model_key)
|
|
if not os.path.exists(model_config.path):
|
|
if model_class.save_to_config:
|
|
model_config.error = ModelError.NotFound
|
|
else:
|
|
self.models.pop(model_key, None)
|
|
else:
|
|
loaded_files.add(model_config.path)
|
|
|
|
for base_model in BaseModelType:
|
|
for model_type in ModelType:
|
|
model_class = MODEL_CLASSES[base_model][model_type]
|
|
models_dir = os.path.join(self.globals.models_path, base_model, model_type)
|
|
|
|
if not os.path.exists(models_dir):
|
|
continue # TODO: or create all folders?
|
|
|
|
for entry_name in os.listdir(models_dir):
|
|
model_path = os.path.join(models_dir, entry_name)
|
|
if model_path not in loaded_files: # TODO: check
|
|
model_name = Path(model_path).stem
|
|
model_key = self.create_key(model_name, base_model, model_type)
|
|
|
|
if model_key in self.models:
|
|
raise Exception(f"Model with key {model_key} added twice")
|
|
|
|
model_config: ModelConfigBase = model_class.build_config(
|
|
path=model_path,
|
|
)
|
|
self.models[model_key] = model_config
|