mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
219 lines
7.6 KiB
Python
219 lines
7.6 KiB
Python
import os
|
|
import json
|
|
import torch
|
|
import safetensors.torch
|
|
from pydantic import Field
|
|
from typing import Literal, Optional
|
|
from .base import (
|
|
ModelBase,
|
|
ModelConfigBase,
|
|
BaseModelType,
|
|
ModelType,
|
|
SubModelType,
|
|
VariantType,
|
|
DiffusersModel,
|
|
)
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
|
|
ModelVariantType = VariantType # TODO:
|
|
|
|
|
|
# TODO: how to name properly
|
|
class StableDiffusion15Model(DiffusersModel):
|
|
|
|
# TODO: str -> Path?
|
|
class DiffusersConfig(ModelConfigBase):
|
|
format: Literal["diffusers"]
|
|
vae: Optional[str] = Field(None)
|
|
variant: ModelVariantType
|
|
|
|
class CheckpointConfig(ModelConfigBase):
|
|
format: Literal["checkpoint"]
|
|
vae: Optional[str] = Field(None)
|
|
config: Optional[str] = Field(None)
|
|
variant: ModelVariantType
|
|
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert base_model == BaseModelType.StableDiffusion1_5
|
|
assert model_type == ModelType.Pipeline
|
|
super().__init__(
|
|
model_path=model_path,
|
|
base_model=BaseModelType.StableDiffusion1_5,
|
|
model_type=ModelType.Pipeline,
|
|
)
|
|
|
|
@staticmethod
|
|
def _fast_safetensors_reader(path: str):
|
|
checkpoint = dict()
|
|
device = torch.device("meta")
|
|
with open(path, "rb") as f:
|
|
definition_len = int.from_bytes(f.read(8), 'little')
|
|
definition_json = f.read(definition_len)
|
|
definition = json.loads(definition_json)
|
|
|
|
if "__metadata__" in definition and definition["__metadata__"].get("format", "pt") not in {"pt", "torch", "pytorch"}:
|
|
raise Exception("Supported only pytorch safetensors files")
|
|
definition.pop("__metadata__", None)
|
|
|
|
for key, info in definition.items():
|
|
dtype = {
|
|
"I8": torch.int8,
|
|
"I16": torch.int16,
|
|
"I32": torch.int32,
|
|
"I64": torch.int64,
|
|
"F16": torch.float16,
|
|
"F32": torch.float32,
|
|
"F64": torch.float64,
|
|
}[info["dtype"]]
|
|
|
|
checkpoint[key] = torch.empty(info["shape"], dtype=dtype, device=device)
|
|
|
|
return checkpoint
|
|
|
|
|
|
@classmethod
|
|
def read_checkpoint_meta(cls, path: str):
|
|
if path.endswith(".safetensors"):
|
|
try:
|
|
checkpoint = cls._fast_safetensors_reader(path)
|
|
except:
|
|
checkpoint = safetensors.torch.load_file(path, device="cpu") # TODO: create issue for support "meta"?
|
|
else:
|
|
checkpoint = torch.load(path, map_location=torch.device("meta"))
|
|
return checkpoint
|
|
|
|
@classmethod
|
|
def build_config(cls, **kwargs):
|
|
if "format" not in kwargs:
|
|
kwargs["format"] = cls.detect_format(kwargs["path"])
|
|
|
|
if "variant" not in kwargs:
|
|
if kwargs["format"] == "checkpoint":
|
|
if "config" in kwargs:
|
|
ckpt_config = OmegaConf.load(kwargs["config"])
|
|
in_channels = ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
|
|
|
|
else:
|
|
checkpoint = cls.read_checkpoint_meta(kwargs["path"])
|
|
checkpoint = checkpoint.get('state_dict', checkpoint)
|
|
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
|
|
|
|
elif kwargs["format"] == "diffusers":
|
|
unet_config_path = os.path.join(kwargs["path"], "unet", "config.json")
|
|
if os.path.exists(unet_config_path):
|
|
unet_config = json.loads(unet_config_path)
|
|
in_channels = unet_config['in_channels']
|
|
|
|
else:
|
|
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
|
|
|
|
else:
|
|
raise NotImplementedError(f"Unknown stable diffusion format: {kwargs['format']}")
|
|
|
|
if in_channels == 9:
|
|
kwargs["variant"] = ModelVariantType.Inpaint
|
|
elif in_channels == 5:
|
|
kwargs["variant"] = ModelVariantType.Depth
|
|
elif in_channels == 4:
|
|
kwargs["variant"] = ModelVariantType.Normal
|
|
else:
|
|
raise Exception("Unkown stable diffusion model format")
|
|
|
|
|
|
return super().build_config(**kwargs)
|
|
|
|
@classmethod
|
|
def save_to_config(cls) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def detect_format(cls, model_path: str):
|
|
if os.path.isdir(model_path):
|
|
return "diffusers"
|
|
else:
|
|
return "checkpoint"
|
|
|
|
@classmethod
|
|
def convert_if_required(cls, model_path: str, dst_cache_path: str, config: Optional[dict]) -> str:
|
|
cfg = cls.build_config(**config)
|
|
if isinstance(cfg, cls.CheckpointConfig):
|
|
return _convert_ckpt_and_cache(cfg) # TODO: args
|
|
else:
|
|
return model_path
|
|
|
|
# all same
|
|
class StableDiffusion2BaseModel(StableDiffusion15Model):
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
# skip StableDiffusion15Model __init__
|
|
assert base_model == BaseModelType.StableDiffusion2Base
|
|
assert model_type == ModelType.Pipeline
|
|
super(StableDiffusion15Model, self).__init__(
|
|
model_path=model_path,
|
|
base_model=BaseModelType.StableDiffusion2Base,
|
|
model_type=ModelType.Pipeline,
|
|
)
|
|
|
|
class StableDiffusion2Model(DiffusersModel):
|
|
|
|
# TODO: str -> Path?
|
|
# overwrite configs
|
|
class DiffusersConfig(ModelConfigBase):
|
|
format: Literal["diffusers"]
|
|
vae: Optional[str] = Field(None)
|
|
attention_upscale: bool = Field(True)
|
|
|
|
class CheckpointConfig(ModelConfigBase):
|
|
format: Literal["checkpoint"]
|
|
vae: Optional[str] = Field(None)
|
|
config: Optional[str] = Field(None)
|
|
attention_upscale: bool = Field(True)
|
|
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
# skip StableDiffusion15Model __init__
|
|
assert base_model == BaseModelType.StableDiffusion2
|
|
assert model_type == ModelType.Pipeline
|
|
super().__init__(
|
|
model_path=model_path,
|
|
base_model=BaseModelType.StableDiffusion2,
|
|
model_type=ModelType.Pipeline,
|
|
)
|
|
|
|
|
|
# TODO: rework
|
|
DictConfig = dict
|
|
def _convert_ckpt_and_cache(self, mconfig: DictConfig) -> str:
|
|
"""
|
|
Convert the checkpoint model indicated in mconfig into a
|
|
diffusers, cache it to disk, and return Path to converted
|
|
file. If already on disk then just returns Path.
|
|
"""
|
|
app_config = InvokeAIAppConfig.get_config()
|
|
weights = app_config.root_dir / mconfig.path
|
|
config_file = app_config.root_dir / mconfig.config
|
|
diffusers_path = app_config.converted_ckpts_dir / weights.stem
|
|
|
|
# return cached version if it exists
|
|
if diffusers_path.exists():
|
|
return diffusers_path
|
|
|
|
# TODO: I think that it more correctly to convert with embedded vae
|
|
# as if user will delete custom vae he will got not embedded but also custom vae
|
|
#vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig)
|
|
vae_ckpt_path, vae_model = None, None
|
|
|
|
# to avoid circular import errors
|
|
from ..convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
|
with SilenceWarnings():
|
|
convert_ckpt_to_diffusers(
|
|
weights,
|
|
diffusers_path,
|
|
extract_ema=True,
|
|
original_config_file=config_file,
|
|
vae=vae_model,
|
|
vae_path=str(app_config.root_dir / vae_ckpt_path) if vae_ckpt_path else None,
|
|
scan_needed=True,
|
|
)
|
|
return diffusers_path
|