InvokeAI/ldm/modules/attention.py
damian0815 71bbfe4a1a Fix #1362 by improving VRAM usage patterns when doing .swap()
commit ef3f7a26e242b73c2beb0195c7fd8f654ef47f55
Author: damian0815 <null@damianstewart.com>
Date:   Tue Nov 8 12:18:37 2022 +0100

    remove log spam

commit 7189d649622d4668b120b0dd278388ad672142c4
Author: damian0815 <null@damianstewart.com>
Date:   Tue Nov 8 12:10:28 2022 +0100

    change the way saved slicing strategy is applied

commit 01c40f751ab72955140165c16f95ae411732265b
Author: damian0815 <null@damianstewart.com>
Date:   Tue Nov 8 12:04:43 2022 +0100

    fix slicing_strategy_getter callsite

commit f8cfe25150a346958903316bc710737d99839923
Author: damian0815 <null@damianstewart.com>
Date:   Tue Nov 8 11:56:22 2022 +0100

    cleanup, consistent dim=0 also tested

commit 5bf9b1e890d48e962afd4a668a219b68271e5dc1
Author: damian0815 <null@damianstewart.com>
Date:   Tue Nov 8 11:34:09 2022 +0100

    refactored context, tested with non-sliced cross attention control

commit d58a46e39bf562e7459290d2444256e8c08ad0b6
Author: damian0815 <null@damianstewart.com>
Date:   Sun Nov 6 00:41:52 2022 +0100

    cleanup

commit 7e2c658b4c06fe239311b65b9bb16fa3adec7fd7
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:57:31 2022 +0100

    disable logs

commit 20ee89d93841b070738b3d8a4385c93b097d92eb
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:36:58 2022 +0100

    slice saved attention if necessary

commit 0a7684a22c880ec0f48cc22bfed4526358f71546
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:32:38 2022 +0100

    raise instead of asserting

commit 7083104c7f3a0d8fd96e94a2f391de50a3c942e4
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:31:00 2022 +0100

    store dim when saving slices

commit f7c0808ed383ec1dc70645288a798ed2aa4fa85c
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:27:16 2022 +0100

    don't retry on exception

commit 749a721e939b3fe7c1741e7998dab6bd2c85a0cb
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:24:50 2022 +0100

    stuff

commit 032ab90e9533be8726301ec91b97137e2aadef9a
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:20:17 2022 +0100

    more logging

commit 3dc34b387f033482305360e605809d95a40bf6f8
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:16:47 2022 +0100

    logs

commit 901c4c1aa4b9bcef695a6551867ec8149e6e6a93
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:12:39 2022 +0100

    actually set save_slicing_strategy to True

commit f780e0a0a7c6b6a3db320891064da82589358c8a
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 22:10:35 2022 +0100

    store slicing strategy

commit 93bb6d566fd18c5c69ef7dacc8f74ba2cf671cb7
Author: damian <git@damianstewart.com>
Date:   Sat Nov 5 20:43:48 2022 +0100

    still not it

commit 5e3a9541f8ae00bde524046963910323e20c40b7
Author: damian <git@damianstewart.com>
Date:   Sat Nov 5 17:20:02 2022 +0100

    wip offloading attention slices on-demand

commit 4c2966aa856b6f3b446216da3619ae931552ef08
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 15:47:40 2022 +0100

    pre-emptive offloading, idk if it works

commit 572576755e9f0a878d38e8173e485126c0efbefb
Author: root <you@example.com>
Date:   Sat Nov 5 11:25:32 2022 +0000

    push attention slices to cpu. slow but saves memory.

commit b57c83a68f2ac03976ebc89ce2ff03812d6d185f
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 12:04:22 2022 +0100

    verbose logging

commit 3a5dae116f110a96585d9eb71d713b5ed2bc3d2b
Author: damian0815 <null@damianstewart.com>
Date:   Sat Nov 5 11:50:48 2022 +0100

    wip fixing mem strategy crash (4 test on runpod)

commit 3cf237db5fae0c7b0b4cc3c47c81830bdb2ae7de
Author: damian0815 <null@damianstewart.com>
Date:   Fri Nov 4 09:02:40 2022 +0100

    wip, only works on cuda
2022-11-09 10:16:21 -05:00

384 lines
14 KiB
Python

from inspect import isfunction
import math
from typing import Callable, Optional
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from ldm.modules.diffusionmodules.util import checkpoint
import psutil
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def Normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class LinearAttention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
k = k.softmax(dim=-1)
context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhde,bhdn->bhen', context, q)
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
return self.to_out(out)
class SpatialSelfAttention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b,c,h,w = q.shape
q = rearrange(q, 'b c h w -> b (h w) c')
k = rearrange(k, 'b c h w -> b c (h w)')
w_ = torch.einsum('bij,bjk->bik', q, k)
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = rearrange(v, 'b c h w -> b c (h w)')
w_ = rearrange(w_, 'b i j -> b j i')
h_ = torch.einsum('bij,bjk->bik', v, w_)
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
h_ = self.proj_out(h_)
return x+h_
def get_mem_free_total(device):
#only on cuda
if not torch.cuda.is_available():
return None
stats = torch.cuda.memory_stats(device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(device)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
return mem_free_total
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim),
nn.Dropout(dropout)
)
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
self.cached_mem_free_total = None
self.attention_slice_wrangler = None
self.slicing_strategy_getter = None
def set_attention_slice_wrangler(self, wrangler: Optional[Callable[[nn.Module, torch.Tensor, int, int, int], torch.Tensor]]):
'''
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current CrossAttention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
Pass None to use the default attention calculation.
:return:
'''
self.attention_slice_wrangler = wrangler
def set_slicing_strategy_getter(self, getter: Optional[Callable[[nn.Module], tuple[int,int]]]):
self.slicing_strategy_getter = getter
def cache_free_memory_count(self, device):
self.cached_mem_free_total = get_mem_free_total(device)
print("free cuda memory: ", self.cached_mem_free_total)
def clear_cached_free_memory_count(self):
self.cached_mem_free_total = None
def einsum_lowest_level(self, q, k, v, dim, offset, slice_size):
# calculate attention scores
attention_scores = einsum('b i d, b j d -> b i j', q, k)
# calculate attention slice by taking the best scores for each latent pixel
default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
attention_slice_wrangler = self.attention_slice_wrangler
if attention_slice_wrangler is not None:
attention_slice = attention_slice_wrangler(self, default_attention_slice, dim, offset, slice_size)
else:
attention_slice = default_attention_slice
return einsum('b i j, b j d -> b i d', attention_slice, v)
def einsum_op_slice_dim0(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
end = i + slice_size
r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size)
return r
def einsum_op_slice_dim1(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size)
return r
def einsum_op_mps_v1(self, q, k, v):
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
return self.einsum_op_slice_dim1(q, k, v, slice_size)
def einsum_op_mps_v2(self, q, k, v):
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
return self.einsum_op_slice_dim0(q, k, v, 1)
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
return self.einsum_lowest_level(q, k, v, None, None, None)
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
if div <= q.shape[0]:
return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div)
return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(self, q, k, v):
# check if we already have a slicing strategy (this should only happen during cross-attention controlled generation)
slicing_strategy_getter = self.slicing_strategy_getter
if slicing_strategy_getter is not None:
(dim, slice_size) = slicing_strategy_getter(self)
if dim is not None:
# print("using saved slicing strategy with dim", dim, "slice size", slice_size)
if dim == 0:
return self.einsum_op_slice_dim0(q, k, v, slice_size)
elif dim == 1:
return self.einsum_op_slice_dim1(q, k, v, slice_size)
# fallback for when there is no saved strategy, or saved strategy does not slice
mem_free_total = self.cached_mem_free_total or get_mem_free_total(q.device)
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def get_attention_mem_efficient(self, q, k, v):
if q.device.type == 'cuda':
torch.cuda.empty_cache()
#print("in get_attention_mem_efficient with q shape", q.shape, ", k shape", k.shape, ", free memory is", get_mem_free_total(q.device))
return self.einsum_op_cuda(q, k, v)
if q.device.type == 'mps':
if self.mem_total_gb >= 32:
return self.einsum_op_mps_v1(q, k, v)
return self.einsum_op_mps_v2(q, k, v)
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return self.einsum_op_tensor_mem(q, k, v, 32)
def forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context) * self.scale
v = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = self.get_attention_mem_efficient(q, k, v)
hidden_states = rearrange(r, '(b h) n d -> b n (h d)', h=h)
return self.to_out(hidden_states)
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
super().__init__()
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None):
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
def _forward(self, x, context=None):
x = x.contiguous() if x.device.type == 'mps' else x
x += self.attn1(self.norm1(x.clone()))
x += self.attn2(self.norm2(x.clone()), context=context)
x += self.ff(self.norm3(x.clone()))
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
"""
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None):
super().__init__()
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels)
self.proj_in = nn.Conv2d(in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
for d in range(depth)]
)
self.proj_out = zero_module(nn.Conv2d(inner_dim,
in_channels,
kernel_size=1,
stride=1,
padding=0))
def forward(self, x, context=None):
# note: if no context is given, cross-attention defaults to self-attention
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
x = self.proj_in(x)
x = rearrange(x, 'b c h w -> b (h w) c')
for block in self.transformer_blocks:
x = block(x, context=context)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
x = self.proj_out(x)
return x + x_in