InvokeAI/invokeai/app/invocations/infill.py
2023-05-11 11:55:51 +10:00

184 lines
5.6 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional, Union, get_args
import numpy as np
import math
from PIL import Image, ImageOps
from pydantic import Field
from invokeai.app.invocations.image import ImageOutput, build_image_output
from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ColorField, ImageField, ImageType
from .baseinvocation import (
BaseInvocation,
InvocationContext,
)
def infill_methods() -> list[str]:
methods = [
"tile",
"solid",
]
if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch")
return methods
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = (
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
def infill_patchmatch(im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
# Skip patchmatch if patchmatch isn't available
if not PatchMatch.patchmatch_available():
return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
def get_tile_images(image: np.ndarray, width=8, height=8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False,
)
def tile_fill_missing(
im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum()
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[
rng.choice(filtered_tiles.shape[0], replace_count), :, :, :
]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
return si
class InfillImageInvocation(BaseInvocation):
"""Infills transparent areas of an image"""
type: Literal["infill"] = "infill"
image: ImageField = Field(default=None, description="The image to infill")
infill_method: INFILL_METHODS = Field(
default=DEFAULT_INFILL_METHOD,
description="The method used to infill empty regions (px)",
)
inpaint_fill: Optional[ColorField] = Field(
default=ColorField(r=127, g=127, b=127, a=255),
description="The solid infill method color",
)
tile_size: int = Field(
default=32, ge=1, description="The tile infill method size (px)"
)
seed: int = Field(
default=-1,
ge=-1,
le=np.iinfo(np.uint32).max,
description="The seed to use (-1 for a random seed)",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
# Do infill
if self.infill_method == "patchmatch" and PatchMatch.patchmatch_available():
infilled = infill_patchmatch(image.copy())
elif self.infill_method == "tile":
infilled = tile_fill_missing(
image.copy(), seed=self.seed, tile_size=self.tile_size
)
elif self.infill_method == "solid":
solid_bg = Image.new("RGBA", image.size, self.inpaint_fill.tuple())
infilled = Image.alpha_composite(solid_bg, image)
else:
raise ValueError(
f"Non-supported infill type {self.infill_method}", self.infill_method
)
infilled.paste(image, (0, 0), image.split()[-1])
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, infilled, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image,
)