InvokeAI/invokeai/app/invocations/collections.py
psychedelicious 8637c40661 feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.

Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
2024-03-01 10:42:33 +11:00

78 lines
2.8 KiB
Python

# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
import numpy as np
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.primitives import IntegerCollectionOutput
from invokeai.app.util.misc import SEED_MAX
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField
@invocation(
"range", title="Integer Range", tags=["collection", "integer", "range"], category="collections", version="1.0.0"
)
class RangeInvocation(BaseInvocation):
"""Creates a range of numbers from start to stop with step"""
start: int = InputField(default=0, description="The start of the range")
stop: int = InputField(default=10, description="The stop of the range")
step: int = InputField(default=1, description="The step of the range")
@field_validator("stop")
def stop_gt_start(cls, v: int, info: ValidationInfo):
if "start" in info.data and v <= info.data["start"]:
raise ValueError("stop must be greater than start")
return v
def invoke(self, context) -> IntegerCollectionOutput:
return IntegerCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
@invocation(
"range_of_size",
title="Integer Range of Size",
tags=["collection", "integer", "size", "range"],
category="collections",
version="1.0.0",
)
class RangeOfSizeInvocation(BaseInvocation):
"""Creates a range from start to start + (size * step) incremented by step"""
start: int = InputField(default=0, description="The start of the range")
size: int = InputField(default=1, gt=0, description="The number of values")
step: int = InputField(default=1, description="The step of the range")
def invoke(self, context) -> IntegerCollectionOutput:
return IntegerCollectionOutput(
collection=list(range(self.start, self.start + (self.step * self.size), self.step))
)
@invocation(
"random_range",
title="Random Range",
tags=["range", "integer", "random", "collection"],
category="collections",
version="1.0.1",
use_cache=False,
)
class RandomRangeInvocation(BaseInvocation):
"""Creates a collection of random numbers"""
low: int = InputField(default=0, description="The inclusive low value")
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
size: int = InputField(default=1, description="The number of values to generate")
seed: int = InputField(
default=0,
ge=0,
le=SEED_MAX,
description="The seed for the RNG (omit for random)",
)
def invoke(self, context) -> IntegerCollectionOutput:
rng = np.random.default_rng(self.seed)
return IntegerCollectionOutput(collection=list(rng.integers(low=self.low, high=self.high, size=self.size)))