mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
311 lines
10 KiB
Python
311 lines
10 KiB
Python
# Initially pulled from https://github.com/black-forest-labs/flux
|
|
|
|
from dataclasses import dataclass
|
|
|
|
import torch
|
|
from einops import rearrange
|
|
from torch import Tensor, nn
|
|
|
|
|
|
@dataclass
|
|
class AutoEncoderParams:
|
|
resolution: int
|
|
in_channels: int
|
|
ch: int
|
|
out_ch: int
|
|
ch_mult: list[int]
|
|
num_res_blocks: int
|
|
z_channels: int
|
|
scale_factor: float
|
|
shift_factor: float
|
|
|
|
|
|
class AttnBlock(nn.Module):
|
|
def __init__(self, in_channels: int):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
|
|
|
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
|
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
|
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
|
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
|
|
|
def attention(self, h_: Tensor) -> Tensor:
|
|
h_ = self.norm(h_)
|
|
q = self.q(h_)
|
|
k = self.k(h_)
|
|
v = self.v(h_)
|
|
|
|
b, c, h, w = q.shape
|
|
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
|
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
|
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
|
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
|
|
|
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return x + self.proj_out(self.attention(x))
|
|
|
|
|
|
class ResnetBlock(nn.Module):
|
|
def __init__(self, in_channels: int, out_channels: int):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
|
|
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
|
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
|
if self.in_channels != self.out_channels:
|
|
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
|
|
|
def forward(self, x):
|
|
h = x
|
|
h = self.norm1(h)
|
|
h = torch.nn.functional.silu(h)
|
|
h = self.conv1(h)
|
|
|
|
h = self.norm2(h)
|
|
h = torch.nn.functional.silu(h)
|
|
h = self.conv2(h)
|
|
|
|
if self.in_channels != self.out_channels:
|
|
x = self.nin_shortcut(x)
|
|
|
|
return x + h
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
def __init__(self, in_channels: int):
|
|
super().__init__()
|
|
# no asymmetric padding in torch conv, must do it ourselves
|
|
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
|
|
|
def forward(self, x: Tensor):
|
|
pad = (0, 1, 0, 1)
|
|
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
def __init__(self, in_channels: int):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
|
|
|
def forward(self, x: Tensor):
|
|
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
resolution: int,
|
|
in_channels: int,
|
|
ch: int,
|
|
ch_mult: list[int],
|
|
num_res_blocks: int,
|
|
z_channels: int,
|
|
):
|
|
super().__init__()
|
|
self.ch = ch
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
self.resolution = resolution
|
|
self.in_channels = in_channels
|
|
# downsampling
|
|
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
|
|
|
curr_res = resolution
|
|
in_ch_mult = (1,) + tuple(ch_mult)
|
|
self.in_ch_mult = in_ch_mult
|
|
self.down = nn.ModuleList()
|
|
block_in = self.ch
|
|
for i_level in range(self.num_resolutions):
|
|
block = nn.ModuleList()
|
|
attn = nn.ModuleList()
|
|
block_in = ch * in_ch_mult[i_level]
|
|
block_out = ch * ch_mult[i_level]
|
|
for _ in range(self.num_res_blocks):
|
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
|
block_in = block_out
|
|
down = nn.Module()
|
|
down.block = block
|
|
down.attn = attn
|
|
if i_level != self.num_resolutions - 1:
|
|
down.downsample = Downsample(block_in)
|
|
curr_res = curr_res // 2
|
|
self.down.append(down)
|
|
|
|
# middle
|
|
self.mid = nn.Module()
|
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
|
self.mid.attn_1 = AttnBlock(block_in)
|
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
|
|
|
# end
|
|
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
|
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
# downsampling
|
|
hs = [self.conv_in(x)]
|
|
for i_level in range(self.num_resolutions):
|
|
for i_block in range(self.num_res_blocks):
|
|
h = self.down[i_level].block[i_block](hs[-1])
|
|
if len(self.down[i_level].attn) > 0:
|
|
h = self.down[i_level].attn[i_block](h)
|
|
hs.append(h)
|
|
if i_level != self.num_resolutions - 1:
|
|
hs.append(self.down[i_level].downsample(hs[-1]))
|
|
|
|
# middle
|
|
h = hs[-1]
|
|
h = self.mid.block_1(h)
|
|
h = self.mid.attn_1(h)
|
|
h = self.mid.block_2(h)
|
|
# end
|
|
h = self.norm_out(h)
|
|
h = torch.nn.functional.silu(h)
|
|
h = self.conv_out(h)
|
|
return h
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
ch: int,
|
|
out_ch: int,
|
|
ch_mult: list[int],
|
|
num_res_blocks: int,
|
|
in_channels: int,
|
|
resolution: int,
|
|
z_channels: int,
|
|
):
|
|
super().__init__()
|
|
self.ch = ch
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
self.resolution = resolution
|
|
self.in_channels = in_channels
|
|
self.ffactor = 2 ** (self.num_resolutions - 1)
|
|
|
|
# compute in_ch_mult, block_in and curr_res at lowest res
|
|
block_in = ch * ch_mult[self.num_resolutions - 1]
|
|
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
|
self.z_shape = (1, z_channels, curr_res, curr_res)
|
|
|
|
# z to block_in
|
|
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
|
|
|
# middle
|
|
self.mid = nn.Module()
|
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
|
self.mid.attn_1 = AttnBlock(block_in)
|
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
|
|
|
# upsampling
|
|
self.up = nn.ModuleList()
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
block = nn.ModuleList()
|
|
attn = nn.ModuleList()
|
|
block_out = ch * ch_mult[i_level]
|
|
for _ in range(self.num_res_blocks + 1):
|
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
|
block_in = block_out
|
|
up = nn.Module()
|
|
up.block = block
|
|
up.attn = attn
|
|
if i_level != 0:
|
|
up.upsample = Upsample(block_in)
|
|
curr_res = curr_res * 2
|
|
self.up.insert(0, up) # prepend to get consistent order
|
|
|
|
# end
|
|
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
|
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
|
|
|
def forward(self, z: Tensor) -> Tensor:
|
|
# z to block_in
|
|
h = self.conv_in(z)
|
|
|
|
# middle
|
|
h = self.mid.block_1(h)
|
|
h = self.mid.attn_1(h)
|
|
h = self.mid.block_2(h)
|
|
|
|
# upsampling
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
h = self.up[i_level].block[i_block](h)
|
|
if len(self.up[i_level].attn) > 0:
|
|
h = self.up[i_level].attn[i_block](h)
|
|
if i_level != 0:
|
|
h = self.up[i_level].upsample(h)
|
|
|
|
# end
|
|
h = self.norm_out(h)
|
|
h = torch.nn.functional.silu(h)
|
|
h = self.conv_out(h)
|
|
return h
|
|
|
|
|
|
class DiagonalGaussian(nn.Module):
|
|
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
|
super().__init__()
|
|
self.sample = sample
|
|
self.chunk_dim = chunk_dim
|
|
|
|
def forward(self, z: Tensor) -> Tensor:
|
|
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
|
if self.sample:
|
|
std = torch.exp(0.5 * logvar)
|
|
return mean + std * torch.randn_like(mean)
|
|
else:
|
|
return mean
|
|
|
|
|
|
class AutoEncoder(nn.Module):
|
|
def __init__(self, params: AutoEncoderParams):
|
|
super().__init__()
|
|
self.encoder = Encoder(
|
|
resolution=params.resolution,
|
|
in_channels=params.in_channels,
|
|
ch=params.ch,
|
|
ch_mult=params.ch_mult,
|
|
num_res_blocks=params.num_res_blocks,
|
|
z_channels=params.z_channels,
|
|
)
|
|
self.decoder = Decoder(
|
|
resolution=params.resolution,
|
|
in_channels=params.in_channels,
|
|
ch=params.ch,
|
|
out_ch=params.out_ch,
|
|
ch_mult=params.ch_mult,
|
|
num_res_blocks=params.num_res_blocks,
|
|
z_channels=params.z_channels,
|
|
)
|
|
self.reg = DiagonalGaussian()
|
|
|
|
self.scale_factor = params.scale_factor
|
|
self.shift_factor = params.shift_factor
|
|
|
|
def encode(self, x: Tensor) -> Tensor:
|
|
z = self.reg(self.encoder(x))
|
|
z = self.scale_factor * (z - self.shift_factor)
|
|
return z
|
|
|
|
def decode(self, z: Tensor) -> Tensor:
|
|
z = z / self.scale_factor + self.shift_factor
|
|
return self.decoder(z)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return self.decode(self.encode(x))
|