mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
727 lines
25 KiB
Python
727 lines
25 KiB
Python
import sys
|
|
from enum import Enum
|
|
import torch
|
|
import safetensors.torch
|
|
from diffusers.utils import is_safetensors_available
|
|
|
|
class BaseModelType(str, Enum):
|
|
#StableDiffusion1_5 = "stable_diffusion_1_5"
|
|
#StableDiffusion2 = "stable_diffusion_2"
|
|
#StableDiffusion2Base = "stable_diffusion_2_base"
|
|
# TODO: maybe then add sample size(512/768)?
|
|
StableDiffusion1_5 = "SD-1"
|
|
StableDiffusion2Base = "SD-2-base" # 512 pixels; this will have epsilon parameterization
|
|
StableDiffusion2 = "SD-2" # 768 pixels; this will have v-prediction parameterization
|
|
#Kandinsky2_1 = "kandinsky_2_1"
|
|
|
|
class ModelType(str, Enum):
|
|
Pipeline = "pipeline"
|
|
Classifier = "classifier"
|
|
Vae = "vae"
|
|
|
|
Lora = "lora"
|
|
ControlNet = "controlnet"
|
|
TextualInversion = "embedding"
|
|
|
|
class SubModelType:
|
|
UNet = "unet"
|
|
TextEncoder = "text_encoder"
|
|
Tokenizer = "tokenizer"
|
|
Vae = "vae"
|
|
Scheduler = "scheduler"
|
|
SafetyChecker = "safety_checker"
|
|
#MoVQ = "movq"
|
|
|
|
MODEL_CLASSES = {
|
|
BaseModel.StableDiffusion1_5: {
|
|
ModelType.Pipeline: StableDiffusionModel,
|
|
ModelType.Classifier: ClassifierModel,
|
|
ModelType.Vae: VaeModel,
|
|
ModelType.Lora: LoraModel,
|
|
ModelType.ControlNet: ControlNetModel,
|
|
ModelType.TextualInversion: TextualInversionModel,
|
|
},
|
|
BaseModel.StableDiffusion2: {
|
|
ModelType.Pipeline: StableDiffusionModel,
|
|
ModelType.Classifier: ClassifierModel,
|
|
ModelType.Vae: VaeModel,
|
|
ModelType.Lora: LoraModel,
|
|
ModelType.ControlNet: ControlNetModel,
|
|
ModelType.TextualInversion: TextualInversionModel,
|
|
},
|
|
BaseModel.StableDiffusion2Base: {
|
|
ModelType.Pipeline: StableDiffusionModel,
|
|
ModelType.Classifier: ClassifierModel,
|
|
ModelType.Vae: VaeModel,
|
|
ModelType.Lora: LoraModel,
|
|
ModelType.ControlNet: ControlNetModel,
|
|
ModelType.TextualInversion: TextualInversionModel,
|
|
},
|
|
#BaseModel.Kandinsky2_1: {
|
|
# ModelType.Pipeline: Kandinsky2_1Model,
|
|
# ModelType.Classifier: ClassifierModel,
|
|
# ModelType.MoVQ: MoVQModel,
|
|
# ModelType.Lora: LoraModel,
|
|
# ModelType.ControlNet: ControlNetModel,
|
|
# ModelType.TextualInversion: TextualInversionModel,
|
|
#},
|
|
}
|
|
|
|
class EmptyConfigLoader(ConfigMixin):
|
|
@classmethod
|
|
def load_config(cls, *args, **kwargs):
|
|
cls.config_name = kwargs.pop("config_name")
|
|
return super().load_config(*args, **kwargs)
|
|
|
|
class ModelBase:
|
|
#model_path: str
|
|
#base_model: BaseModelType
|
|
#model_type: ModelType
|
|
|
|
def __init__(
|
|
self,
|
|
model_path: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
):
|
|
self.model_path = model_path
|
|
self.base_model = base_model
|
|
self.model_type = model_type
|
|
|
|
def _hf_definition_to_type(self, subtypes: List[str]) -> Type:
|
|
if len(subtypes) < 2:
|
|
raise Exception("Invalid subfolder definition!")
|
|
if subtypes[0] in ["diffusers", "transformers"]:
|
|
res_type = sys.modules[subtypes[0]]
|
|
subtypes = subtypes[1:]
|
|
|
|
else:
|
|
res_type = sys.modules["diffusers"]
|
|
res_type = getattr(res_type, "pipelines")
|
|
|
|
|
|
for subtype in subtypes:
|
|
res_type = getattr(res_type, subtype)
|
|
return res_type
|
|
|
|
|
|
class DiffusersModel(ModelBase):
|
|
#child_types: Dict[str, Type]
|
|
#child_sizes: Dict[str, int]
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
self.child_types: Dict[str, Type] = dict()
|
|
self.child_sizes: Dict[str, int] = dict()
|
|
|
|
try:
|
|
config_data = DiffusionPipeline.load_config(self.model_path)
|
|
#config_data = json.loads(os.path.join(self.model_path, "model_index.json"))
|
|
except:
|
|
raise Exception("Invalid diffusers model! (model_index.json not found or invalid)")
|
|
|
|
config_data.pop("_ignore_files", None)
|
|
|
|
# retrieve all folder_names that contain relevant files
|
|
child_components = [k for k, v in config_data.items() if isinstance(v, list)]
|
|
|
|
for child_name in child_components:
|
|
child_type = self._hf_definition_to_type(config_data[child_name])
|
|
self.child_types[child_name] = child_type
|
|
self.child_sizes[child_name] = calc_model_size_by_fs(self.model_path, subfolder=child_name)
|
|
|
|
|
|
def get_size(self, child_type: Optional[SubModelType] = None):
|
|
if child_type is None:
|
|
return sum(self.child_sizes.values())
|
|
else:
|
|
return self.child_sizes[child_type]
|
|
|
|
|
|
def get_model(
|
|
self,
|
|
torch_dtype: Optional[torch.dtype],
|
|
child_type: Optional[SubModelType] = None,
|
|
):
|
|
# return pipeline in different function to pass more arguments
|
|
if child_type is None:
|
|
raise Exception("Child model type can't be null on diffusers model")
|
|
if child_type not in self.child_types:
|
|
return None # TODO: or raise
|
|
|
|
if torch_dtype == torch.float16:
|
|
variants = ["fp16", None]
|
|
else:
|
|
variants = [None, "fp16"]
|
|
|
|
# TODO: better error handling(differentiate not found from others)
|
|
for variant in variants:
|
|
try:
|
|
# TODO: set cache_dir to /dev/null to be sure that cache not used?
|
|
model = self.child_types[child_type].from_pretrained(
|
|
self.model_path,
|
|
subfolder=child_type.value,
|
|
torch_dtype=torch_dtype,
|
|
variant=variant,
|
|
local_files_only=True,
|
|
)
|
|
break
|
|
except Exception as e:
|
|
print("====ERR LOAD====")
|
|
print(f"{variant}: {e}")
|
|
|
|
# calc more accurate size
|
|
self.child_sizes[child_type] = calc_model_size_by_data(model)
|
|
return model
|
|
|
|
#def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
|
|
|
|
|
class StableDiffusionModel(DiffusersModel):
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert base_model in {
|
|
BaseModelType.StableDiffusion1_5,
|
|
BaseModelType.StableDiffusion2,
|
|
BaseModelType.StableDiffusion2Base,
|
|
}
|
|
assert model_type == ModelType.Pipeline
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
@staticmethod
|
|
def convert_if_required(model_path: Union[str, Path], dst_path: str, config: Optional[dict]) -> Path:
|
|
if not isinstance(model_path, Path):
|
|
model_path = Path(model_path)
|
|
|
|
# TODO: args
|
|
# TODO: set model_path, to config? pass dst_path as arg?
|
|
# TODO: check
|
|
return _convert_ckpt_and_cache(config)
|
|
|
|
class classproperty(object): # pylint: disable=invalid-name
|
|
"""Class property decorator.
|
|
|
|
Example usage:
|
|
|
|
class MyClass(object):
|
|
|
|
@classproperty
|
|
def value(cls):
|
|
return '123'
|
|
|
|
> print MyClass.value
|
|
123
|
|
"""
|
|
|
|
def __init__(self, func):
|
|
self._func = func
|
|
|
|
def __get__(self, owner_self, owner_cls):
|
|
return self._func(owner_cls)
|
|
|
|
class ModelConfigBase(BaseModel):
|
|
path: str # or Path
|
|
name: str
|
|
description: Optional[str]
|
|
|
|
|
|
class StableDiffusionDModel(DiffusersModel):
|
|
class Config(ModelConfigBase):
|
|
format: str
|
|
vae: Optional[str] = Field(None)
|
|
config: Optional[str] = Field(None)
|
|
|
|
@root_validator
|
|
def validator(cls, values):
|
|
if values["format"] not in {"checkpoint", "diffusers"}:
|
|
raise ValueError(f"Unkown stable diffusion model format: {values['format']}")
|
|
if values["config"] is not None and values["format"] != "checkpoint":
|
|
raise ValueError(f"Custom config field allowed only in checkpoint stable diffusion model")
|
|
return values
|
|
|
|
# return config only for checkpoint format
|
|
def dict(self, *args, **kwargs):
|
|
result = super().dict(*args, **kwargs)
|
|
if self.format != "checkpoint":
|
|
result.pop("config", None)
|
|
return result
|
|
|
|
@classproperty
|
|
def has_config(self):
|
|
return True
|
|
|
|
def build_config(self, **kwargs) -> dict:
|
|
try:
|
|
res = dict(
|
|
path=kwargs["path"],
|
|
name=kwargs["name"],
|
|
description=kwargs.get("description", None),
|
|
|
|
format=kwargs["format"],
|
|
vae=kwargs.get("vae", None),
|
|
)
|
|
if res["format"] not in {"checkpoint", "diffusers"}:
|
|
raise Exception(f"Unkonwn stable diffusion model format: {res['format']}")
|
|
if res["format"] == "checkpoint":
|
|
res["config"] = kwargs.get("config", None)
|
|
# TODO: raise if config specified for diffusers?
|
|
|
|
return res
|
|
|
|
except KeyError as e:
|
|
raise Exception(f"Field \"{e.args[0]}\" not found!")
|
|
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert base_model == BaseModelType.StableDiffusion1_5
|
|
assert model_type == ModelType.Pipeline
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
@classmethod
|
|
def convert_if_required(cls, model_path: str, dst_path: str, config: Optional[dict]) -> str:
|
|
model_config = cls.Config(
|
|
**config,
|
|
path=model_path,
|
|
name="",
|
|
)
|
|
|
|
if hasattr(model_config, "config"):
|
|
convert_ckpt_and_cache(
|
|
model_path=model_path,
|
|
dst_path=dst_path,
|
|
config=config,
|
|
)
|
|
return dst_path
|
|
|
|
else:
|
|
return model_path
|
|
|
|
class StableDiffusion15CheckpointModel(DiffusersModel):
|
|
class Cnfig(ModelConfigBase):
|
|
vae: Optional[str] = Field(None)
|
|
config: Optional[str] = Field(None)
|
|
|
|
class StableDiffusion2BaseDiffusersModel(DiffusersModel):
|
|
class Config(ModelConfigBase):
|
|
vae: Optional[str] = Field(None)
|
|
|
|
class StableDiffusion2BaseCheckpointModel(DiffusersModel):
|
|
class Cnfig(ModelConfigBase):
|
|
vae: Optional[str] = Field(None)
|
|
config: Optional[str] = Field(None)
|
|
|
|
class StableDiffusion2DiffusersModel(DiffusersModel):
|
|
class Config(ModelConfigBase):
|
|
vae: Optional[str] = Field(None)
|
|
attention_upscale: bool = Field(True)
|
|
|
|
class StableDiffusion2CheckpointModel(DiffusersModel):
|
|
class Config(ModelConfigBase):
|
|
vae: Optional[str] = Field(None)
|
|
config: Optional[str] = Field(None)
|
|
attention_upscale: bool = Field(True)
|
|
|
|
|
|
class ClassifierModel(ModelBase):
|
|
#child_types: Dict[str, Type]
|
|
#child_sizes: Dict[str, int]
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert model_type == SDModelType.Classifier
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
self.child_types: Dict[str, Type] = dict()
|
|
self.child_sizes: Dict[str, int] = dict()
|
|
|
|
try:
|
|
main_config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
|
|
#main_config = json.loads(os.path.join(self.model_path, "config.json"))
|
|
except:
|
|
raise Exception("Invalid classifier model! (config.json not found or invalid)")
|
|
|
|
self._load_tokenizer(main_config)
|
|
self._load_text_encoder(main_config)
|
|
self._load_feature_extractor(main_config)
|
|
|
|
|
|
def _load_tokenizer(self, main_config: dict):
|
|
try:
|
|
tokenizer_config = EmptyConfigLoader.load_config(self.model_path, config_name="tokenizer_config.json")
|
|
#tokenizer_config = json.loads(os.path.join(self.model_path, "tokenizer_config.json"))
|
|
except:
|
|
raise Exception("Invalid classifier model! (Failed to load tokenizer_config.json)")
|
|
|
|
if "tokenizer_class" in tokenizer_config:
|
|
tokenizer_class_name = tokenizer_config["tokenizer_class"]
|
|
elif "model_type" in main_config:
|
|
tokenizer_class_name = transformers.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES[main_config["model_type"]]
|
|
else:
|
|
raise Exception("Invalid classifier model! (Failed to detect tokenizer type)")
|
|
|
|
self.child_types[SDModelType.Tokenizer] = self._hf_definition_to_type(["transformers", tokenizer_class_name])
|
|
self.child_sizes[SDModelType.Tokenizer] = 0
|
|
|
|
|
|
def _load_text_encoder(self, main_config: dict):
|
|
if "architectures" in main_config and len(main_config["architectures"]) > 0:
|
|
text_encoder_class_name = main_config["architectures"][0]
|
|
elif "model_type" in main_config:
|
|
text_encoder_class_name = transformers.models.auto.modeling_auto.MODEL_FOR_PRETRAINING_MAPPING_NAMES[main_config["model_type"]]
|
|
else:
|
|
raise Exception("Invalid classifier model! (Failed to detect text_encoder type)")
|
|
|
|
self.child_types[SDModelType.TextEncoder] = self._hf_definition_to_type(["transformers", text_encoder_class_name])
|
|
self.child_sizes[SDModelType.TextEncoder] = calc_model_size_by_fs(self.model_path)
|
|
|
|
|
|
def _load_feature_extractor(self, main_config: dict):
|
|
self.child_sizes[SDModelType.FeatureExtractor] = 0
|
|
try:
|
|
feature_extractor_config = EmptyConfigLoader.load_config(self.model_path, config_name="preprocessor_config.json")
|
|
except:
|
|
return # feature extractor not passed with t5
|
|
|
|
try:
|
|
feature_extractor_class_name = feature_extractor_config["feature_extractor_type"]
|
|
self.child_types[SDModelType.FeatureExtractor] = self._hf_definition_to_type(["transformers", feature_extractor_class_name])
|
|
except:
|
|
raise Exception("Invalid classifier model! (Unknown feature_extrator type)")
|
|
|
|
|
|
def get_size(self, child_type: Optional[SDModelType] = None):
|
|
if child_type is None:
|
|
return sum(self.child_sizes.values())
|
|
else:
|
|
return self.child_sizes[child_type]
|
|
|
|
|
|
def get_model(
|
|
self,
|
|
torch_dtype: Optional[torch.dtype],
|
|
child_type: Optional[SDModelType] = None,
|
|
):
|
|
if child_type is None:
|
|
raise Exception("Child model type can't be null on classififer model")
|
|
if child_type not in self.child_types:
|
|
return None # TODO: or raise
|
|
|
|
model = self.child_types[child_type].from_pretrained(
|
|
self.model_path,
|
|
subfolder=child_type.value,
|
|
torch_dtype=torch_dtype,
|
|
)
|
|
# calc more accurate size
|
|
self.child_sizes[child_type] = calc_model_size_by_data(model)
|
|
return model
|
|
|
|
@staticmethod
|
|
def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
|
if not isinstance(model_path, Path):
|
|
model_path = Path(model_path)
|
|
return model_path
|
|
|
|
|
|
|
|
class VaeModel(ModelBase):
|
|
#vae_class: Type
|
|
#model_size: int
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert model_type == ModelType.Vae
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
try:
|
|
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
|
|
#config = json.loads(os.path.join(self.model_path, "config.json"))
|
|
except:
|
|
raise Exception("Invalid vae model! (config.json not found or invalid)")
|
|
|
|
try:
|
|
vae_class_name = config.get("_class_name", "AutoencoderKL")
|
|
self.vae_class = self._hf_definition_to_type(["diffusers", vae_class_name])
|
|
self.model_size = calc_model_size_by_fs(self.model_path)
|
|
except:
|
|
raise Exception("Invalid vae model! (Unkown vae type)")
|
|
|
|
def get_size(self, child_type: Optional[SDModelType] = None):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in vae model")
|
|
return self.model_size
|
|
|
|
def get_model(
|
|
self,
|
|
torch_dtype: Optional[torch.dtype],
|
|
child_type: Optional[SDModelType] = None,
|
|
):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in vae model")
|
|
|
|
model = self.vae_class.from_pretrained(
|
|
self.model_path,
|
|
torch_dtype=torch_dtype,
|
|
)
|
|
# calc more accurate size
|
|
self.model_size = calc_model_size_by_data(model)
|
|
return model
|
|
|
|
@staticmethod
|
|
def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
|
if not isinstance(model_path, Path):
|
|
model_path = Path(model_path)
|
|
# TODO:
|
|
#_convert_vae_ckpt_and_cache
|
|
raise Exception("TODO: ")
|
|
|
|
|
|
class LoRAModel(ModelBase):
|
|
#model_size: int
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert model_type == ModelType.Lora
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
self.model_size = os.path.getsize(self.model_path)
|
|
|
|
def get_size(self, child_type: Optional[SDModelType] = None):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in lora")
|
|
return self.model_size
|
|
|
|
def get_model(
|
|
self,
|
|
torch_dtype: Optional[torch.dtype],
|
|
child_type: Optional[SDModelType] = None,
|
|
):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in lora")
|
|
|
|
model = LoRAModel.from_checkpoint(
|
|
file_path=self.model_path,
|
|
dtype=torch_dtype,
|
|
)
|
|
|
|
self.model_size = model.calc_size()
|
|
return model
|
|
|
|
@staticmethod
|
|
def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
|
if not isinstance(model_path, Path):
|
|
model_path = Path(model_path)
|
|
|
|
# TODO: add diffusers lora when it stabilizes a bit
|
|
return model_path
|
|
|
|
|
|
class TextualInversionModel(ModelBase):
|
|
#model_size: int
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert model_type == ModelType.TextualInversion
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
self.model_size = os.path.getsize(self.model_path)
|
|
|
|
def get_size(self, child_type: Optional[SDModelType] = None):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in textual inversion")
|
|
return self.model_size
|
|
|
|
def get_model(
|
|
self,
|
|
torch_dtype: Optional[torch.dtype],
|
|
child_type: Optional[SDModelType] = None,
|
|
):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in textual inversion")
|
|
|
|
model = TextualInversionModel.from_checkpoint(
|
|
file_path=self.model_path,
|
|
dtype=torch_dtype,
|
|
)
|
|
|
|
self.model_size = model.embedding.nelement() * model.embedding.element_size()
|
|
return model
|
|
|
|
@staticmethod
|
|
def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
|
if not isinstance(model_path, Path):
|
|
model_path = Path(model_path)
|
|
return model_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calc_model_size_by_fs(
|
|
model_path: str,
|
|
subfolder: Optional[str] = None,
|
|
variant: Optional[str] = None
|
|
):
|
|
if subfolder is not None:
|
|
model_path = os.path.join(model_path, subfolder)
|
|
|
|
# this can happen when, for example, the safety checker
|
|
# is not downloaded.
|
|
if not os.path.exists(model_path):
|
|
return 0
|
|
|
|
all_files = os.listdir(model_path)
|
|
all_files = [f for f in all_files if os.path.isfile(os.path.join(model_path, f))]
|
|
|
|
fp16_files = set([f for f in all_files if ".fp16." in f or ".fp16-" in f])
|
|
bit8_files = set([f for f in all_files if ".8bit." in f or ".8bit-" in f])
|
|
other_files = set(all_files) - fp16_files - bit8_files
|
|
|
|
if variant is None:
|
|
files = other_files
|
|
elif variant == "fp16":
|
|
files = fp16_files
|
|
elif variant == "8bit":
|
|
files = bit8_files
|
|
else:
|
|
raise NotImplementedError(f"Unknown variant: {variant}")
|
|
|
|
# try read from index if exists
|
|
index_postfix = ".index.json"
|
|
if variant is not None:
|
|
index_postfix = f".index.{variant}.json"
|
|
|
|
for file in files:
|
|
if not file.endswith(index_postfix):
|
|
continue
|
|
try:
|
|
with open(os.path.join(model_path, file), "r") as f:
|
|
index_data = json.loads(f.read())
|
|
return int(index_data["metadata"]["total_size"])
|
|
except:
|
|
pass
|
|
|
|
# calculate files size if there is no index file
|
|
formats = [
|
|
(".safetensors",), # safetensors
|
|
(".bin",), # torch
|
|
(".onnx", ".pb"), # onnx
|
|
(".msgpack",), # flax
|
|
(".ckpt",), # tf
|
|
(".h5",), # tf2
|
|
]
|
|
|
|
for file_format in formats:
|
|
model_files = [f for f in files if f.endswith(file_format)]
|
|
if len(model_files) == 0:
|
|
continue
|
|
|
|
model_size = 0
|
|
for model_file in model_files:
|
|
file_stats = os.stat(os.path.join(model_path, model_file))
|
|
model_size += file_stats.st_size
|
|
return model_size
|
|
|
|
#raise NotImplementedError(f"Unknown model structure! Files: {all_files}")
|
|
return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu
|
|
|
|
|
|
def calc_model_size_by_data(model) -> int:
|
|
if isinstance(model, DiffusionPipeline):
|
|
return _calc_pipeline_by_data(model)
|
|
elif isinstance(model, torch.nn.Module):
|
|
return _calc_model_by_data(model)
|
|
else:
|
|
return 0
|
|
|
|
|
|
def _calc_pipeline_by_data(pipeline) -> int:
|
|
res = 0
|
|
for submodel_key in pipeline.components.keys():
|
|
submodel = getattr(pipeline, submodel_key)
|
|
if submodel is not None and isinstance(submodel, torch.nn.Module):
|
|
res += _calc_model_by_data(submodel)
|
|
return res
|
|
|
|
|
|
def _calc_model_by_data(model) -> int:
|
|
mem_params = sum([param.nelement()*param.element_size() for param in model.parameters()])
|
|
mem_bufs = sum([buf.nelement()*buf.element_size() for buf in model.buffers()])
|
|
mem = mem_params + mem_bufs # in bytes
|
|
return mem
|
|
|
|
|
|
def _convert_ckpt_and_cache(self, mconfig: DictConfig) -> Path:
|
|
"""
|
|
Convert the checkpoint model indicated in mconfig into a
|
|
diffusers, cache it to disk, and return Path to converted
|
|
file. If already on disk then just returns Path.
|
|
"""
|
|
app_config = InvokeAIAppConfig.get_config()
|
|
weights = app_config.root_dir / mconfig.path
|
|
config_file = app_config.root_dir / mconfig.config
|
|
diffusers_path = app_config.converted_ckpts_dir / weights.stem
|
|
|
|
# return cached version if it exists
|
|
if diffusers_path.exists():
|
|
return diffusers_path
|
|
|
|
# TODO: I think that it more correctly to convert with embedded vae
|
|
# as if user will delete custom vae he will got not embedded but also custom vae
|
|
#vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig)
|
|
vae_ckpt_path, vae_model = None, None
|
|
|
|
# to avoid circular import errors
|
|
from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
|
with SilenceWarnings():
|
|
convert_ckpt_to_diffusers(
|
|
weights,
|
|
diffusers_path,
|
|
extract_ema=True,
|
|
original_config_file=config_file,
|
|
vae=vae_model,
|
|
vae_path=str(app_config.root_dir / vae_ckpt_path) if vae_ckpt_path else None,
|
|
scan_needed=True,
|
|
)
|
|
return diffusers_path
|
|
|
|
def _convert_vae_ckpt_and_cache(self, mconfig: DictConfig) -> Path:
|
|
"""
|
|
Convert the VAE indicated in mconfig into a diffusers AutoencoderKL
|
|
object, cache it to disk, and return Path to converted
|
|
file. If already on disk then just returns Path.
|
|
"""
|
|
app_config = InvokeAIAppConfig.get_config()
|
|
root = app_config.root_dir
|
|
weights_file = root / mconfig.path
|
|
config_file = root / mconfig.config
|
|
diffusers_path = app_config.converted_ckpts_dir / weights_file.stem
|
|
image_size = mconfig.get('width') or mconfig.get('height') or 512
|
|
|
|
# return cached version if it exists
|
|
if diffusers_path.exists():
|
|
return diffusers_path
|
|
|
|
# this avoids circular import error
|
|
from .convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
|
|
if weights_file.suffix == '.safetensors':
|
|
checkpoint = safetensors.torch.load_file(weights_file)
|
|
else:
|
|
checkpoint = torch.load(weights_file, map_location="cpu")
|
|
|
|
# sometimes weights are hidden under "state_dict", and sometimes not
|
|
if "state_dict" in checkpoint:
|
|
checkpoint = checkpoint["state_dict"]
|
|
|
|
config = OmegaConf.load(config_file)
|
|
|
|
vae_model = convert_ldm_vae_to_diffusers(
|
|
checkpoint = checkpoint,
|
|
vae_config = config,
|
|
image_size = image_size
|
|
)
|
|
vae_model.save_pretrained(
|
|
diffusers_path,
|
|
safe_serialization=is_safetensors_available()
|
|
)
|
|
return diffusers_path
|