InvokeAI/invokeai/app/invocations/generate.py
2023-03-03 14:59:17 -05:00

212 lines
8.1 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Any, Literal, Optional, Union
import numpy as np
from PIL import Image
from pydantic import Field
from skimage.exposure.histogram_matching import match_histograms
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
SAMPLER_NAME_VALUES = Literal[
"ddim", "plms", "k_lms", "k_dpm_2", "k_dpm_2_a", "k_euler", "k_euler_a", "k_heun"
]
# Text to image
class TextToImageInvocation(BaseInvocation):
"""Generates an image using text2img."""
type: Literal["txt2img"] = "txt2img"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, sample: Any = None, step: int = 0
) -> None:
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
self.id,
step,
float(step) / float(self.steps),
)
def invoke(self, context: InvocationContext) -> ImageOutput:
def step_callback(sample, step=0):
self.dispatch_progress(context, sample, step)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
if self.model is None or self.model == "":
self.model = context.services.generate.model_name
# Set the model (if already cached, this does nothing)
context.services.generate.set_model(self.model)
results = context.services.generate.prompt2image(
prompt=self.prompt,
step_callback=step_callback,
**self.dict(
exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually
)
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class ImageToImageInvocation(TextToImageInvocation):
"""Generates an image using img2img."""
type: Literal["img2img"] = "img2img"
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
strength: float = Field(
default=0.75, gt=0, le=1, description="The strength of the original image"
)
fit: bool = Field(
default=True,
description="Whether or not the result should be fit to the aspect ratio of the input image",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
)
mask = None
def step_callback(sample, step=0):
self.dispatch_progress(context, sample, step)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
if self.model is None or self.model == "":
self.model = context.services.generate.model_name
# Set the model (if already cached, this does nothing)
context.services.generate.set_model(self.model)
results = context.services.generate.prompt2image(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=step_callback,
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
result_image = results[0][0]
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
type: Literal["inpaint"] = "inpaint"
# Inputs
mask: Union[ImageField, None] = Field(description="The mask")
inpaint_replace: float = Field(
default=0.0,
ge=0.0,
le=1.0,
description="The amount by which to replace masked areas with latent noise",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
)
mask = (
None
if self.mask is None
else context.services.images.get(self.mask.image_type, self.mask.image_name)
)
def step_callback(sample, step=0):
self.dispatch_progress(context, sample, step)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
if self.model is None or self.model == "":
self.model = context.services.generate.model_name
# Set the model (if already cached, this does nothing)
context.services.generate.set_model(self.model)
results = context.services.generate.prompt2image(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=step_callback,
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
result_image = results[0][0]
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)