mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
414 lines
15 KiB
Python
414 lines
15 KiB
Python
import os.path
|
|
from cmath import log
|
|
import torch
|
|
from torch import nn
|
|
|
|
import sys
|
|
|
|
from ldm.invoke.concepts_lib import Concepts
|
|
from ldm.data.personalized import per_img_token_list
|
|
from transformers import CLIPTokenizer
|
|
from functools import partial
|
|
from picklescan.scanner import scan_file_path
|
|
|
|
PROGRESSIVE_SCALE = 2000
|
|
|
|
|
|
def get_clip_token_for_string(tokenizer, string):
|
|
batch_encoding = tokenizer(
|
|
string,
|
|
truncation=True,
|
|
max_length=77,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding='max_length',
|
|
return_tensors='pt',
|
|
)
|
|
tokens = batch_encoding['input_ids']
|
|
""" assert (
|
|
torch.count_nonzero(tokens - 49407) == 2
|
|
), f"String '{string}' maps to more than a single token. Please use another string" """
|
|
|
|
return tokens[0, 1]
|
|
|
|
|
|
def get_bert_token_for_string(tokenizer, string):
|
|
token = tokenizer(string)
|
|
# assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
|
|
|
|
token = token[0, 1]
|
|
|
|
return token
|
|
|
|
|
|
def get_embedding_for_clip_token(embedder, token):
|
|
return embedder(token.unsqueeze(0))[0, 0]
|
|
|
|
class EmbeddingManager(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embedder,
|
|
placeholder_strings=None,
|
|
initializer_words=None,
|
|
per_image_tokens=False,
|
|
num_vectors_per_token=1,
|
|
progressive_words=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
|
|
self.embedder = embedder
|
|
self.concepts_library=Concepts()
|
|
self.concepts_loaded = dict()
|
|
|
|
self.string_to_token_dict = {}
|
|
self.string_to_param_dict = nn.ParameterDict()
|
|
|
|
self.initial_embeddings = (
|
|
nn.ParameterDict()
|
|
) # These should not be optimized
|
|
|
|
self.progressive_words = progressive_words
|
|
self.progressive_counter = 0
|
|
|
|
self.max_vectors_per_token = num_vectors_per_token
|
|
|
|
if hasattr(
|
|
embedder, 'tokenizer'
|
|
): # using Stable Diffusion's CLIP encoder
|
|
self.is_clip = True
|
|
get_token_for_string = partial(
|
|
get_clip_token_for_string, embedder.tokenizer
|
|
)
|
|
get_embedding_for_tkn = partial(
|
|
get_embedding_for_clip_token,
|
|
embedder.transformer.text_model.embeddings,
|
|
)
|
|
# per bug report #572
|
|
#token_dim = 1280
|
|
token_dim = 768
|
|
else: # using LDM's BERT encoder
|
|
self.is_clip = False
|
|
get_token_for_string = partial(
|
|
get_bert_token_for_string, embedder.tknz_fn
|
|
)
|
|
get_embedding_for_tkn = embedder.transformer.token_emb
|
|
token_dim = 1280
|
|
|
|
if per_image_tokens:
|
|
placeholder_strings.extend(per_img_token_list)
|
|
|
|
for idx, placeholder_string in enumerate(placeholder_strings):
|
|
|
|
token = get_token_for_string(placeholder_string)
|
|
|
|
if initializer_words and idx < len(initializer_words):
|
|
init_word_token = get_token_for_string(initializer_words[idx])
|
|
|
|
with torch.no_grad():
|
|
init_word_embedding = get_embedding_for_tkn(
|
|
init_word_token.cpu()
|
|
)
|
|
|
|
token_params = torch.nn.Parameter(
|
|
init_word_embedding.unsqueeze(0).repeat(
|
|
num_vectors_per_token, 1
|
|
),
|
|
requires_grad=True,
|
|
)
|
|
self.initial_embeddings[
|
|
placeholder_string
|
|
] = torch.nn.Parameter(
|
|
init_word_embedding.unsqueeze(0).repeat(
|
|
num_vectors_per_token, 1
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
else:
|
|
token_params = torch.nn.Parameter(
|
|
torch.rand(
|
|
size=(num_vectors_per_token, token_dim),
|
|
requires_grad=True,
|
|
)
|
|
)
|
|
|
|
self.string_to_token_dict[placeholder_string] = token
|
|
self.string_to_param_dict[placeholder_string] = token_params
|
|
|
|
def forward(
|
|
self,
|
|
tokenized_text,
|
|
embedded_text,
|
|
):
|
|
b, n, device = *tokenized_text.shape, tokenized_text.device
|
|
|
|
for (
|
|
placeholder_string,
|
|
placeholder_token,
|
|
) in self.string_to_token_dict.items():
|
|
|
|
placeholder_embedding = self.string_to_param_dict[
|
|
placeholder_string
|
|
].to(device)
|
|
|
|
if self.progressive_words:
|
|
self.progressive_counter += 1
|
|
max_step_tokens = (
|
|
1 + self.progressive_counter // PROGRESSIVE_SCALE
|
|
)
|
|
else:
|
|
max_step_tokens = self.max_vectors_per_token
|
|
|
|
num_vectors_for_token = min(
|
|
placeholder_embedding.shape[0], max_step_tokens
|
|
)
|
|
|
|
placeholder_rows, placeholder_cols = torch.where(
|
|
tokenized_text == placeholder_token.to(tokenized_text.device)
|
|
)
|
|
|
|
if placeholder_rows.nelement() == 0:
|
|
continue
|
|
|
|
sorted_cols, sort_idx = torch.sort(
|
|
placeholder_cols, descending=True
|
|
)
|
|
sorted_rows = placeholder_rows[sort_idx]
|
|
|
|
for idx in range(sorted_rows.shape[0]):
|
|
row = sorted_rows[idx]
|
|
col = sorted_cols[idx]
|
|
|
|
new_token_row = torch.cat(
|
|
[
|
|
tokenized_text[row][:col],
|
|
placeholder_token.repeat(num_vectors_for_token).to(
|
|
device
|
|
),
|
|
tokenized_text[row][col + 1 :],
|
|
],
|
|
axis=0,
|
|
)[:n]
|
|
new_embed_row = torch.cat(
|
|
[
|
|
embedded_text[row][:col],
|
|
placeholder_embedding[:num_vectors_for_token],
|
|
embedded_text[row][col + 1 :],
|
|
],
|
|
axis=0,
|
|
)[:n]
|
|
|
|
embedded_text[row] = new_embed_row
|
|
tokenized_text[row] = new_token_row
|
|
|
|
return embedded_text
|
|
|
|
def save(self, ckpt_path):
|
|
torch.save(
|
|
{
|
|
'string_to_token': self.string_to_token_dict,
|
|
'string_to_param': self.string_to_param_dict,
|
|
},
|
|
ckpt_path,
|
|
)
|
|
|
|
def load_concepts(self, concepts:list[str], full=True):
|
|
bin_files = list()
|
|
for concept_name in concepts:
|
|
if concept_name in self.concepts_loaded:
|
|
continue
|
|
else:
|
|
bin_file = self.concepts_library.get_concept_model_path(concept_name)
|
|
if not bin_file:
|
|
continue
|
|
bin_files.append(bin_file)
|
|
self.concepts_loaded[concept_name]=True
|
|
self.load(bin_files, full)
|
|
|
|
def list_terms(self) -> list[str]:
|
|
return self.concepts_loaded.keys()
|
|
|
|
def load(self, ckpt_paths, full=True):
|
|
if len(ckpt_paths) == 0:
|
|
return
|
|
if type(ckpt_paths) != list:
|
|
ckpt_paths = [ckpt_paths]
|
|
ckpt_paths = self._expand_directories(ckpt_paths)
|
|
for c in ckpt_paths:
|
|
self._load(c,full)
|
|
# remember that we know this term and don't try to download it again from the concepts library
|
|
# note that if the concept name is also provided and different from the trigger term, they
|
|
# both will be stored in this dictionary
|
|
for term in self.string_to_param_dict.keys():
|
|
term = term.strip('<').strip('>')
|
|
self.concepts_loaded[term] = True
|
|
print(f'>> Current embedding manager terms: {", ".join(self.string_to_param_dict.keys())}')
|
|
|
|
def _expand_directories(self, paths:list[str]):
|
|
expanded_paths = list()
|
|
for path in paths:
|
|
if os.path.isfile(path):
|
|
expanded_paths.append(path)
|
|
elif os.path.isdir(path):
|
|
for root, _, files in os.walk(path):
|
|
for name in files:
|
|
expanded_paths.append(os.path.join(root,name))
|
|
return [x for x in expanded_paths if os.path.splitext(x)[1] in ('.pt','.bin')]
|
|
|
|
def _load(self, ckpt_path, full=True):
|
|
try:
|
|
scan_result = scan_file_path(ckpt_path)
|
|
if scan_result.infected_files == 1:
|
|
print(f'\n### Security Issues Found in Model: {scan_result.issues_count}')
|
|
print('### For your safety, InvokeAI will not load this embed.')
|
|
return
|
|
except Exception:
|
|
print(f"### WARNING::: Invalid or corrupt embeddings found. Ignoring: {ckpt_path}")
|
|
return
|
|
|
|
embedding_info = self.parse_embedding(ckpt_path)
|
|
if embedding_info:
|
|
self.max_vectors_per_token = embedding_info['num_vectors_per_token']
|
|
self.add_embedding(embedding_info['name'], embedding_info['embedding'], full)
|
|
else:
|
|
print(f'>> Failed to load embedding located at {ckpt_path}. Unsupported file.')
|
|
|
|
def add_embedding(self, token_str, embedding, full):
|
|
if token_str in self.string_to_param_dict:
|
|
print(f">> Embedding manager refusing to overwrite already-loaded term '{token_str}'")
|
|
return
|
|
if not full:
|
|
embedding = embedding.half()
|
|
if len(embedding.shape) == 1:
|
|
embedding = embedding.unsqueeze(0)
|
|
|
|
num_tokens_added = self.embedder.tokenizer.add_tokens(token_str)
|
|
current_embeddings = self.embedder.transformer.resize_token_embeddings(None)
|
|
current_token_count = current_embeddings.num_embeddings
|
|
new_token_count = current_token_count + num_tokens_added
|
|
self.embedder.transformer.resize_token_embeddings(new_token_count)
|
|
|
|
token = get_clip_token_for_string(self.embedder.tokenizer, token_str)
|
|
self.string_to_token_dict[token_str] = token
|
|
self.string_to_param_dict[token_str] = torch.nn.Parameter(embedding)
|
|
|
|
def parse_embedding(self, embedding_file: str):
|
|
file_type = embedding_file.split('.')[-1]
|
|
if file_type == 'pt':
|
|
return self.parse_embedding_pt(embedding_file)
|
|
elif file_type == 'bin':
|
|
return self.parse_embedding_bin(embedding_file)
|
|
else:
|
|
print(f'>> Not a recognized embedding file: {embedding_file}')
|
|
|
|
def parse_embedding_pt(self, embedding_file):
|
|
embedding_ckpt = torch.load(embedding_file, map_location='cpu')
|
|
embedding_info = {}
|
|
|
|
# Check if valid embedding file
|
|
if 'string_to_token' and 'string_to_param' in embedding_ckpt:
|
|
|
|
# Catch variants that do not have the expected keys or values.
|
|
try:
|
|
embedding_info['name'] = embedding_ckpt['name'] or os.path.basename(os.path.splitext(embedding_file)[0])
|
|
|
|
# Check num of embeddings and warn user only the first will be used
|
|
embedding_info['num_of_embeddings'] = len(embedding_ckpt["string_to_token"])
|
|
if embedding_info['num_of_embeddings'] > 1:
|
|
print('>> More than 1 embedding found. Will use the first one')
|
|
|
|
embedding = list(embedding_ckpt['string_to_param'].values())[0]
|
|
except (AttributeError,KeyError):
|
|
return self.handle_broken_pt_variants(embedding_ckpt, embedding_file)
|
|
|
|
embedding_info['embedding'] = embedding
|
|
embedding_info['num_vectors_per_token'] = embedding.size()[0]
|
|
embedding_info['token_dim'] = embedding.size()[1]
|
|
|
|
try:
|
|
embedding_info['trained_steps'] = embedding_ckpt['step']
|
|
embedding_info['trained_model_name'] = embedding_ckpt['sd_checkpoint_name']
|
|
embedding_info['trained_model_checksum'] = embedding_ckpt['sd_checkpoint']
|
|
except AttributeError:
|
|
print(">> No Training Details Found. Passing ...")
|
|
|
|
# .pt files found at https://cyberes.github.io/stable-diffusion-textual-inversion-models/
|
|
# They are actually .bin files
|
|
elif len(embedding_ckpt.keys())==1:
|
|
print('>> Detected .bin file masquerading as .pt file')
|
|
embedding_info = self.parse_embedding_bin(embedding_file)
|
|
|
|
else:
|
|
print('>> Invalid embedding format')
|
|
embedding_info = None
|
|
|
|
return embedding_info
|
|
|
|
def parse_embedding_bin(self, embedding_file):
|
|
embedding_ckpt = torch.load(embedding_file, map_location='cpu')
|
|
embedding_info = {}
|
|
|
|
if list(embedding_ckpt.keys()) == 0:
|
|
print(">> Invalid concepts file")
|
|
embedding_info = None
|
|
else:
|
|
for token in list(embedding_ckpt.keys()):
|
|
embedding_info['name'] = token or os.path.basename(os.path.splitext(embedding_file)[0])
|
|
embedding_info['embedding'] = embedding_ckpt[token]
|
|
embedding_info['num_vectors_per_token'] = 1 # All Concepts seem to default to 1
|
|
embedding_info['token_dim'] = embedding_info['embedding'].size()[0]
|
|
|
|
return embedding_info
|
|
|
|
def handle_broken_pt_variants(self, embedding_ckpt:dict, embedding_file:str)->dict:
|
|
'''
|
|
This handles the broken .pt file variants. We only know of one at present.
|
|
'''
|
|
embedding_info = {}
|
|
if isinstance(list(embedding_ckpt['string_to_token'].values())[0],torch.Tensor):
|
|
print(f'>> Variant Embedding Detected. Parsing: {embedding_file}') # example at https://github.com/invoke-ai/InvokeAI/issues/1829
|
|
token = list(embedding_ckpt['string_to_token'].keys())[0]
|
|
embedding_info['name'] = os.path.basename(os.path.splitext(embedding_file)[0])
|
|
embedding_info['embedding'] = embedding_ckpt['string_to_param'].state_dict()[token]
|
|
embedding_info['num_vectors_per_token'] = embedding_info['embedding'].shape[0]
|
|
embedding_info['token_dim'] = embedding_info['embedding'].size()[0]
|
|
else:
|
|
print('>> Invalid embedding format')
|
|
embedding_info = None
|
|
|
|
return embedding_info
|
|
|
|
def has_embedding_for_token(self, token_str):
|
|
return token_str in self.string_to_token_dict
|
|
|
|
def get_embedding_norms_squared(self):
|
|
all_params = torch.cat(
|
|
list(self.string_to_param_dict.values()), axis=0
|
|
) # num_placeholders x embedding_dim
|
|
param_norm_squared = (all_params * all_params).sum(
|
|
axis=-1
|
|
) # num_placeholders
|
|
|
|
return param_norm_squared
|
|
|
|
def embedding_parameters(self):
|
|
return self.string_to_param_dict.parameters()
|
|
|
|
def embedding_to_coarse_loss(self):
|
|
|
|
loss = 0.0
|
|
num_embeddings = len(self.initial_embeddings)
|
|
|
|
for key in self.initial_embeddings:
|
|
optimized = self.string_to_param_dict[key]
|
|
coarse = self.initial_embeddings[key].clone().to(optimized.device)
|
|
|
|
loss = (
|
|
loss
|
|
+ (optimized - coarse)
|
|
@ (optimized - coarse).T
|
|
/ num_embeddings
|
|
)
|
|
|
|
return loss
|