InvokeAI/ldm/modules/embedding_manager.py
2022-12-17 03:07:05 +00:00

414 lines
15 KiB
Python

import os.path
from cmath import log
import torch
from torch import nn
import sys
from ldm.invoke.concepts_lib import Concepts
from ldm.data.personalized import per_img_token_list
from transformers import CLIPTokenizer
from functools import partial
from picklescan.scanner import scan_file_path
PROGRESSIVE_SCALE = 2000
def get_clip_token_for_string(tokenizer, string):
batch_encoding = tokenizer(
string,
truncation=True,
max_length=77,
return_length=True,
return_overflowing_tokens=False,
padding='max_length',
return_tensors='pt',
)
tokens = batch_encoding['input_ids']
""" assert (
torch.count_nonzero(tokens - 49407) == 2
), f"String '{string}' maps to more than a single token. Please use another string" """
return tokens[0, 1]
def get_bert_token_for_string(tokenizer, string):
token = tokenizer(string)
# assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
token = token[0, 1]
return token
def get_embedding_for_clip_token(embedder, token):
return embedder(token.unsqueeze(0))[0, 0]
class EmbeddingManager(nn.Module):
def __init__(
self,
embedder,
placeholder_strings=None,
initializer_words=None,
per_image_tokens=False,
num_vectors_per_token=1,
progressive_words=False,
**kwargs,
):
super().__init__()
self.embedder = embedder
self.concepts_library=Concepts()
self.concepts_loaded = dict()
self.string_to_token_dict = {}
self.string_to_param_dict = nn.ParameterDict()
self.initial_embeddings = (
nn.ParameterDict()
) # These should not be optimized
self.progressive_words = progressive_words
self.progressive_counter = 0
self.max_vectors_per_token = num_vectors_per_token
if hasattr(
embedder, 'tokenizer'
): # using Stable Diffusion's CLIP encoder
self.is_clip = True
get_token_for_string = partial(
get_clip_token_for_string, embedder.tokenizer
)
get_embedding_for_tkn = partial(
get_embedding_for_clip_token,
embedder.transformer.text_model.embeddings,
)
# per bug report #572
#token_dim = 1280
token_dim = 768
else: # using LDM's BERT encoder
self.is_clip = False
get_token_for_string = partial(
get_bert_token_for_string, embedder.tknz_fn
)
get_embedding_for_tkn = embedder.transformer.token_emb
token_dim = 1280
if per_image_tokens:
placeholder_strings.extend(per_img_token_list)
for idx, placeholder_string in enumerate(placeholder_strings):
token = get_token_for_string(placeholder_string)
if initializer_words and idx < len(initializer_words):
init_word_token = get_token_for_string(initializer_words[idx])
with torch.no_grad():
init_word_embedding = get_embedding_for_tkn(
init_word_token.cpu()
)
token_params = torch.nn.Parameter(
init_word_embedding.unsqueeze(0).repeat(
num_vectors_per_token, 1
),
requires_grad=True,
)
self.initial_embeddings[
placeholder_string
] = torch.nn.Parameter(
init_word_embedding.unsqueeze(0).repeat(
num_vectors_per_token, 1
),
requires_grad=False,
)
else:
token_params = torch.nn.Parameter(
torch.rand(
size=(num_vectors_per_token, token_dim),
requires_grad=True,
)
)
self.string_to_token_dict[placeholder_string] = token
self.string_to_param_dict[placeholder_string] = token_params
def forward(
self,
tokenized_text,
embedded_text,
):
b, n, device = *tokenized_text.shape, tokenized_text.device
for (
placeholder_string,
placeholder_token,
) in self.string_to_token_dict.items():
placeholder_embedding = self.string_to_param_dict[
placeholder_string
].to(device)
if self.progressive_words:
self.progressive_counter += 1
max_step_tokens = (
1 + self.progressive_counter // PROGRESSIVE_SCALE
)
else:
max_step_tokens = self.max_vectors_per_token
num_vectors_for_token = min(
placeholder_embedding.shape[0], max_step_tokens
)
placeholder_rows, placeholder_cols = torch.where(
tokenized_text == placeholder_token.to(tokenized_text.device)
)
if placeholder_rows.nelement() == 0:
continue
sorted_cols, sort_idx = torch.sort(
placeholder_cols, descending=True
)
sorted_rows = placeholder_rows[sort_idx]
for idx in range(sorted_rows.shape[0]):
row = sorted_rows[idx]
col = sorted_cols[idx]
new_token_row = torch.cat(
[
tokenized_text[row][:col],
placeholder_token.repeat(num_vectors_for_token).to(
device
),
tokenized_text[row][col + 1 :],
],
axis=0,
)[:n]
new_embed_row = torch.cat(
[
embedded_text[row][:col],
placeholder_embedding[:num_vectors_for_token],
embedded_text[row][col + 1 :],
],
axis=0,
)[:n]
embedded_text[row] = new_embed_row
tokenized_text[row] = new_token_row
return embedded_text
def save(self, ckpt_path):
torch.save(
{
'string_to_token': self.string_to_token_dict,
'string_to_param': self.string_to_param_dict,
},
ckpt_path,
)
def load_concepts(self, concepts:list[str], full=True):
bin_files = list()
for concept_name in concepts:
if concept_name in self.concepts_loaded:
continue
else:
bin_file = self.concepts_library.get_concept_model_path(concept_name)
if not bin_file:
continue
bin_files.append(bin_file)
self.concepts_loaded[concept_name]=True
self.load(bin_files, full)
def list_terms(self) -> list[str]:
return self.concepts_loaded.keys()
def load(self, ckpt_paths, full=True):
if len(ckpt_paths) == 0:
return
if type(ckpt_paths) != list:
ckpt_paths = [ckpt_paths]
ckpt_paths = self._expand_directories(ckpt_paths)
for c in ckpt_paths:
self._load(c,full)
# remember that we know this term and don't try to download it again from the concepts library
# note that if the concept name is also provided and different from the trigger term, they
# both will be stored in this dictionary
for term in self.string_to_param_dict.keys():
term = term.strip('<').strip('>')
self.concepts_loaded[term] = True
print(f'>> Current embedding manager terms: {", ".join(self.string_to_param_dict.keys())}')
def _expand_directories(self, paths:list[str]):
expanded_paths = list()
for path in paths:
if os.path.isfile(path):
expanded_paths.append(path)
elif os.path.isdir(path):
for root, _, files in os.walk(path):
for name in files:
expanded_paths.append(os.path.join(root,name))
return [x for x in expanded_paths if os.path.splitext(x)[1] in ('.pt','.bin')]
def _load(self, ckpt_path, full=True):
try:
scan_result = scan_file_path(ckpt_path)
if scan_result.infected_files == 1:
print(f'\n### Security Issues Found in Model: {scan_result.issues_count}')
print('### For your safety, InvokeAI will not load this embed.')
return
except Exception:
print(f"### WARNING::: Invalid or corrupt embeddings found. Ignoring: {ckpt_path}")
return
embedding_info = self.parse_embedding(ckpt_path)
if embedding_info:
self.max_vectors_per_token = embedding_info['num_vectors_per_token']
self.add_embedding(embedding_info['name'], embedding_info['embedding'], full)
else:
print(f'>> Failed to load embedding located at {ckpt_path}. Unsupported file.')
def add_embedding(self, token_str, embedding, full):
if token_str in self.string_to_param_dict:
print(f">> Embedding manager refusing to overwrite already-loaded term '{token_str}'")
return
if not full:
embedding = embedding.half()
if len(embedding.shape) == 1:
embedding = embedding.unsqueeze(0)
num_tokens_added = self.embedder.tokenizer.add_tokens(token_str)
current_embeddings = self.embedder.transformer.resize_token_embeddings(None)
current_token_count = current_embeddings.num_embeddings
new_token_count = current_token_count + num_tokens_added
self.embedder.transformer.resize_token_embeddings(new_token_count)
token = get_clip_token_for_string(self.embedder.tokenizer, token_str)
self.string_to_token_dict[token_str] = token
self.string_to_param_dict[token_str] = torch.nn.Parameter(embedding)
def parse_embedding(self, embedding_file: str):
file_type = embedding_file.split('.')[-1]
if file_type == 'pt':
return self.parse_embedding_pt(embedding_file)
elif file_type == 'bin':
return self.parse_embedding_bin(embedding_file)
else:
print(f'>> Not a recognized embedding file: {embedding_file}')
def parse_embedding_pt(self, embedding_file):
embedding_ckpt = torch.load(embedding_file, map_location='cpu')
embedding_info = {}
# Check if valid embedding file
if 'string_to_token' and 'string_to_param' in embedding_ckpt:
# Catch variants that do not have the expected keys or values.
try:
embedding_info['name'] = embedding_ckpt['name'] or os.path.basename(os.path.splitext(embedding_file)[0])
# Check num of embeddings and warn user only the first will be used
embedding_info['num_of_embeddings'] = len(embedding_ckpt["string_to_token"])
if embedding_info['num_of_embeddings'] > 1:
print('>> More than 1 embedding found. Will use the first one')
embedding = list(embedding_ckpt['string_to_param'].values())[0]
except (AttributeError,KeyError):
return self.handle_broken_pt_variants(embedding_ckpt, embedding_file)
embedding_info['embedding'] = embedding
embedding_info['num_vectors_per_token'] = embedding.size()[0]
embedding_info['token_dim'] = embedding.size()[1]
try:
embedding_info['trained_steps'] = embedding_ckpt['step']
embedding_info['trained_model_name'] = embedding_ckpt['sd_checkpoint_name']
embedding_info['trained_model_checksum'] = embedding_ckpt['sd_checkpoint']
except AttributeError:
print(">> No Training Details Found. Passing ...")
# .pt files found at https://cyberes.github.io/stable-diffusion-textual-inversion-models/
# They are actually .bin files
elif len(embedding_ckpt.keys())==1:
print('>> Detected .bin file masquerading as .pt file')
embedding_info = self.parse_embedding_bin(embedding_file)
else:
print('>> Invalid embedding format')
embedding_info = None
return embedding_info
def parse_embedding_bin(self, embedding_file):
embedding_ckpt = torch.load(embedding_file, map_location='cpu')
embedding_info = {}
if list(embedding_ckpt.keys()) == 0:
print(">> Invalid concepts file")
embedding_info = None
else:
for token in list(embedding_ckpt.keys()):
embedding_info['name'] = token or os.path.basename(os.path.splitext(embedding_file)[0])
embedding_info['embedding'] = embedding_ckpt[token]
embedding_info['num_vectors_per_token'] = 1 # All Concepts seem to default to 1
embedding_info['token_dim'] = embedding_info['embedding'].size()[0]
return embedding_info
def handle_broken_pt_variants(self, embedding_ckpt:dict, embedding_file:str)->dict:
'''
This handles the broken .pt file variants. We only know of one at present.
'''
embedding_info = {}
if isinstance(list(embedding_ckpt['string_to_token'].values())[0],torch.Tensor):
print(f'>> Variant Embedding Detected. Parsing: {embedding_file}') # example at https://github.com/invoke-ai/InvokeAI/issues/1829
token = list(embedding_ckpt['string_to_token'].keys())[0]
embedding_info['name'] = os.path.basename(os.path.splitext(embedding_file)[0])
embedding_info['embedding'] = embedding_ckpt['string_to_param'].state_dict()[token]
embedding_info['num_vectors_per_token'] = embedding_info['embedding'].shape[0]
embedding_info['token_dim'] = embedding_info['embedding'].size()[0]
else:
print('>> Invalid embedding format')
embedding_info = None
return embedding_info
def has_embedding_for_token(self, token_str):
return token_str in self.string_to_token_dict
def get_embedding_norms_squared(self):
all_params = torch.cat(
list(self.string_to_param_dict.values()), axis=0
) # num_placeholders x embedding_dim
param_norm_squared = (all_params * all_params).sum(
axis=-1
) # num_placeholders
return param_norm_squared
def embedding_parameters(self):
return self.string_to_param_dict.parameters()
def embedding_to_coarse_loss(self):
loss = 0.0
num_embeddings = len(self.initial_embeddings)
for key in self.initial_embeddings:
optimized = self.string_to_param_dict[key]
coarse = self.initial_embeddings[key].clone().to(optimized.device)
loss = (
loss
+ (optimized - coarse)
@ (optimized - coarse).T
/ num_embeddings
)
return loss