mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
560 lines
19 KiB
Python
560 lines
19 KiB
Python
"""
|
|
Utility (backend) functions used by model_install.py
|
|
"""
|
|
import os
|
|
import re
|
|
import shutil
|
|
import sys
|
|
import warnings
|
|
from dataclasses import dataclass,field
|
|
from pathlib import Path
|
|
from tempfile import TemporaryFile
|
|
from typing import List, Dict, Set, Callable
|
|
|
|
import requests
|
|
from diffusers import AutoencoderKL
|
|
from huggingface_hub import hf_hub_url, HfFolder
|
|
from omegaconf import OmegaConf
|
|
from omegaconf.dictconfig import DictConfig
|
|
from tqdm import tqdm
|
|
|
|
import invokeai.configs as configs
|
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.backend.model_management import ModelManager, ModelType, BaseModelType
|
|
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
|
from ..util.logging import InvokeAILogger
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
# --------------------------globals-----------------------
|
|
config = InvokeAIAppConfig.get_config()
|
|
|
|
Model_dir = "models"
|
|
Weights_dir = "ldm/stable-diffusion-v1/"
|
|
|
|
# the initial "configs" dir is now bundled in the `invokeai.configs` package
|
|
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
|
|
|
|
# initial models omegaconf
|
|
Datasets = None
|
|
|
|
# logger
|
|
logger = InvokeAILogger.getLogger(name='InvokeAI')
|
|
|
|
Config_preamble = """
|
|
# This file describes the alternative machine learning models
|
|
# available to InvokeAI script.
|
|
#
|
|
# To add a new model, follow the examples below. Each
|
|
# model requires a model config file, a weights file,
|
|
# and the width and height of the images it
|
|
# was trained on.
|
|
"""
|
|
|
|
@dataclass
|
|
class ModelInstallList:
|
|
'''Class for listing models to be installed/removed'''
|
|
install_models: List[str] = field(default_factory=list)
|
|
remove_models: List[str] = field(default_factory=list)
|
|
|
|
@dataclass
|
|
class UserSelections():
|
|
install_models: List[str]= field(default_factory=list)
|
|
remove_models: List[str]=field(default_factory=list)
|
|
install_cn_models: List[str] = field(default_factory=list)
|
|
remove_cn_models: List[str] = field(default_factory=list)
|
|
install_lora_models: List[str] = field(default_factory=list)
|
|
remove_lora_models: List[str] = field(default_factory=list)
|
|
install_ti_models: List[str] = field(default_factory=list)
|
|
remove_ti_models: List[str] = field(default_factory=list)
|
|
scan_directory: Path = None
|
|
autoscan_on_startup: bool=False
|
|
import_model_paths: str=None
|
|
|
|
@dataclass
|
|
class ModelLoadInfo():
|
|
name: str
|
|
model_type: ModelType
|
|
base_type: BaseModelType
|
|
path: Path = None
|
|
repo_id: str = None
|
|
description: str = ''
|
|
installed: bool = False
|
|
recommended: bool = False
|
|
|
|
class ModelInstall(object):
|
|
def __init__(self,config:InvokeAIAppConfig):
|
|
self.config = config
|
|
self.mgr = ModelManager(config.model_conf_path)
|
|
self.datasets = OmegaConf.load(Dataset_path)
|
|
|
|
def all_models(self)->Dict[str,ModelLoadInfo]:
|
|
'''
|
|
Return dict of model_key=>ModelStatus
|
|
'''
|
|
model_dict = dict()
|
|
# first populate with the entries in INITIAL_MODELS.yaml
|
|
for key, value in self.datasets.items():
|
|
name,base,model_type = ModelManager.parse_key(key)
|
|
value['name'] = name
|
|
value['base_type'] = base
|
|
value['model_type'] = model_type
|
|
model_dict[key] = ModelLoadInfo(**value)
|
|
|
|
# supplement with entries in models.yaml
|
|
installed_models = self.mgr.list_models()
|
|
for base in installed_models.keys():
|
|
for model_type in installed_models[base].keys():
|
|
for name, value in installed_models[base][model_type].items():
|
|
key = ModelManager.create_key(name, base, model_type)
|
|
if key in model_dict:
|
|
model_dict[key].installed = True
|
|
else:
|
|
model_dict[key] = ModelLoadInfo(
|
|
name = name,
|
|
base_type = base,
|
|
model_type = model_type,
|
|
description = value.get('description'),
|
|
path = value.get('path'),
|
|
installed = True,
|
|
)
|
|
return {x : model_dict[x] for x in sorted(model_dict.keys(),key=lambda y: model_dict[y].name.lower())}
|
|
|
|
def starter_models(self)->Set[str]:
|
|
models = set()
|
|
for key, value in self.datasets.items():
|
|
name,base,model_type = ModelManager.parse_key(key)
|
|
if model_type==ModelType.Pipeline:
|
|
models.add(key)
|
|
return models
|
|
|
|
|
|
def default_config_file():
|
|
return config.model_conf_path
|
|
|
|
def sd_configs():
|
|
return config.legacy_conf_path
|
|
|
|
def initial_models():
|
|
global Datasets
|
|
if Datasets:
|
|
return Datasets
|
|
return (Datasets := OmegaConf.load(Dataset_path)['diffusers'])
|
|
|
|
def add_models(model_manager, config_file_path: Path, models: List[tuple[str,str,str]]):
|
|
print(f'Installing {models}')
|
|
|
|
def del_models(model_manager, config_file_path: Path, models: List[tuple[str,str,str]]):
|
|
for base, model_type, name in models:
|
|
logger.info(f"Deleting {name}...")
|
|
model_manager.del_model(name, base, model_type)
|
|
model_manager.commit(config_file_path)
|
|
|
|
def install_requested_models(
|
|
diffusers: ModelInstallList = None,
|
|
controlnet: ModelInstallList = None,
|
|
lora: ModelInstallList = None,
|
|
ti: ModelInstallList = None,
|
|
cn_model_map: Dict[str,str] = None, # temporary - move to model manager
|
|
scan_directory: Path = None,
|
|
external_models: List[str] = None,
|
|
scan_at_startup: bool = False,
|
|
precision: str = "float16",
|
|
config_file_path: Path = None,
|
|
model_config_file_callback: Callable[[Path],Path] = None,
|
|
):
|
|
"""
|
|
Entry point for installing/deleting starter models, or installing external models.
|
|
"""
|
|
access_token = HfFolder.get_token()
|
|
config_file_path = config_file_path or default_config_file()
|
|
if not config_file_path.exists():
|
|
open(config_file_path, "w")
|
|
|
|
# prevent circular import here
|
|
from ..model_management import ModelManager
|
|
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
|
|
|
|
for x in [controlnet, lora, ti, diffusers]:
|
|
if x:
|
|
add_models(model_manager, config_file_path, x.install_models)
|
|
del_models(model_manager, config_file_path, x.remove_models)
|
|
|
|
# if diffusers:
|
|
|
|
# if diffusers.install_models and len(diffusers.install_models) > 0:
|
|
# logger.info("Installing requested models")
|
|
# downloaded_paths = download_weight_datasets(
|
|
# models=diffusers.install_models,
|
|
# access_token=None,
|
|
# precision=precision,
|
|
# )
|
|
# successful = {x:v for x,v in downloaded_paths.items() if v is not None}
|
|
# if len(successful) > 0:
|
|
# update_config_file(successful, config_file_path)
|
|
# if len(successful) < len(diffusers.install_models):
|
|
# unsuccessful = [x for x in downloaded_paths if downloaded_paths[x] is None]
|
|
# logger.warning(f"Some of the model downloads were not successful: {unsuccessful}")
|
|
|
|
# due to above, we have to reload the model manager because conf file
|
|
# was changed behind its back
|
|
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
|
|
|
|
external_models = external_models or list()
|
|
if scan_directory:
|
|
external_models.append(str(scan_directory))
|
|
|
|
if len(external_models) > 0:
|
|
logger.info("INSTALLING EXTERNAL MODELS")
|
|
for path_url_or_repo in external_models:
|
|
logger.debug(path_url_or_repo)
|
|
try:
|
|
model_manager.heuristic_import(
|
|
path_url_or_repo,
|
|
commit_to_conf=config_file_path,
|
|
config_file_callback = model_config_file_callback,
|
|
)
|
|
except KeyboardInterrupt:
|
|
sys.exit(-1)
|
|
except Exception:
|
|
pass
|
|
|
|
if scan_at_startup and scan_directory.is_dir():
|
|
update_autoconvert_dir(scan_directory)
|
|
else:
|
|
update_autoconvert_dir(None)
|
|
|
|
def update_autoconvert_dir(autodir: Path):
|
|
'''
|
|
Update the "autoconvert_dir" option in invokeai.yaml
|
|
'''
|
|
invokeai_config_path = config.init_file_path
|
|
conf = OmegaConf.load(invokeai_config_path)
|
|
conf.InvokeAI.Paths.autoconvert_dir = str(autodir) if autodir else None
|
|
yaml = OmegaConf.to_yaml(conf)
|
|
tmpfile = invokeai_config_path.parent / "new_config.tmp"
|
|
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
|
outfile.write(yaml)
|
|
tmpfile.replace(invokeai_config_path)
|
|
|
|
|
|
# -------------------------------------
|
|
def yes_or_no(prompt: str, default_yes=True):
|
|
default = "y" if default_yes else "n"
|
|
response = input(f"{prompt} [{default}] ") or default
|
|
if default_yes:
|
|
return response[0] not in ("n", "N")
|
|
else:
|
|
return response[0] in ("y", "Y")
|
|
|
|
# ---------------------------------------------
|
|
def recommended_datasets() -> List['str']:
|
|
datasets = set()
|
|
for ds in initial_models().keys():
|
|
if initial_models()[ds].get("recommended", False):
|
|
datasets.add(ds)
|
|
return list(datasets)
|
|
|
|
# ---------------------------------------------
|
|
def default_dataset() -> dict:
|
|
datasets = set()
|
|
for ds in initial_models().keys():
|
|
if initial_models()[ds].get("default", False):
|
|
datasets.add(ds)
|
|
return list(datasets)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def all_datasets() -> dict:
|
|
datasets = dict()
|
|
for ds in initial_models().keys():
|
|
datasets[ds] = True
|
|
return datasets
|
|
|
|
|
|
# ---------------------------------------------
|
|
# look for legacy model.ckpt in models directory and offer to
|
|
# normalize its name
|
|
def migrate_models_ckpt():
|
|
model_path = os.path.join(config.root_dir, Model_dir, Weights_dir)
|
|
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
|
|
return
|
|
new_name = initial_models()["stable-diffusion-1.4"]["file"]
|
|
logger.warning(
|
|
'The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.'
|
|
)
|
|
logger.warning(f"model.ckpt => {new_name}")
|
|
os.replace(
|
|
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
|
|
)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_weight_datasets(
|
|
models: List[str], access_token: str, precision: str = "float32"
|
|
):
|
|
migrate_models_ckpt()
|
|
successful = dict()
|
|
for mod in models:
|
|
logger.info(f"Downloading {mod}:")
|
|
successful[mod] = _download_repo_or_file(
|
|
initial_models()[mod], access_token, precision=precision
|
|
)
|
|
return successful
|
|
|
|
|
|
def _download_repo_or_file(
|
|
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
|
) -> Path:
|
|
path = None
|
|
if mconfig["format"] == "ckpt":
|
|
path = _download_ckpt_weights(mconfig, access_token)
|
|
else:
|
|
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
|
|
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
|
|
_download_diffusion_weights(
|
|
mconfig["vae"], access_token, precision=precision
|
|
)
|
|
return path
|
|
|
|
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
|
|
repo_id = mconfig["repo_id"]
|
|
filename = mconfig["file"]
|
|
cache_dir = os.path.join(config.root_dir, Model_dir, Weights_dir)
|
|
return hf_download_with_resume(
|
|
repo_id=repo_id,
|
|
model_dir=cache_dir,
|
|
model_name=filename,
|
|
access_token=access_token,
|
|
)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_from_hf(
|
|
model_class: object, model_name: str, destination: Path, **kwargs
|
|
):
|
|
logger = InvokeAILogger.getLogger('InvokeAI')
|
|
logger.addFilter(lambda x: 'fp16 is not a valid' not in x.getMessage())
|
|
|
|
model = model_class.from_pretrained(
|
|
model_name,
|
|
resume_download=True,
|
|
**kwargs,
|
|
)
|
|
model.save_pretrained(destination, safe_serialization=True)
|
|
return destination
|
|
|
|
def _download_diffusion_weights(
|
|
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
|
):
|
|
repo_id = mconfig["repo_id"]
|
|
model_class = (
|
|
StableDiffusionGeneratorPipeline
|
|
if mconfig.get("format", None) == "diffusers"
|
|
else AutoencoderKL
|
|
)
|
|
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
|
|
path = None
|
|
for extra_args in extra_arg_list:
|
|
try:
|
|
path = download_from_hf(
|
|
model_class,
|
|
repo_id,
|
|
safety_checker=None,
|
|
**extra_args,
|
|
)
|
|
except OSError as e:
|
|
if 'Revision Not Found' in str(e):
|
|
pass
|
|
else:
|
|
logger.error(str(e))
|
|
if path:
|
|
break
|
|
return path
|
|
|
|
|
|
# ---------------------------------------------
|
|
def hf_download_with_resume(
|
|
repo_id: str,
|
|
model_dir: str,
|
|
model_name: str,
|
|
model_dest: Path = None,
|
|
access_token: str = None,
|
|
) -> Path:
|
|
model_dest = model_dest or Path(os.path.join(model_dir, model_name))
|
|
os.makedirs(model_dir, exist_ok=True)
|
|
|
|
url = hf_hub_url(repo_id, model_name)
|
|
|
|
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
|
|
open_mode = "wb"
|
|
exist_size = 0
|
|
|
|
if os.path.exists(model_dest):
|
|
exist_size = os.path.getsize(model_dest)
|
|
header["Range"] = f"bytes={exist_size}-"
|
|
open_mode = "ab"
|
|
|
|
resp = requests.get(url, headers=header, stream=True)
|
|
total = int(resp.headers.get("content-length", 0))
|
|
|
|
if (
|
|
resp.status_code == 416
|
|
): # "range not satisfiable", which means nothing to return
|
|
logger.info(f"{model_name}: complete file found. Skipping.")
|
|
return model_dest
|
|
elif resp.status_code == 404:
|
|
logger.warning("File not found")
|
|
return None
|
|
elif resp.status_code != 200:
|
|
logger.warning(f"{model_name}: {resp.reason}")
|
|
elif exist_size > 0:
|
|
logger.info(f"{model_name}: partial file found. Resuming...")
|
|
else:
|
|
logger.info(f"{model_name}: Downloading...")
|
|
|
|
try:
|
|
with open(model_dest, open_mode) as file, tqdm(
|
|
desc=model_name,
|
|
initial=exist_size,
|
|
total=total + exist_size,
|
|
unit="iB",
|
|
unit_scale=True,
|
|
unit_divisor=1000,
|
|
) as bar:
|
|
for data in resp.iter_content(chunk_size=1024):
|
|
size = file.write(data)
|
|
bar.update(size)
|
|
except Exception as e:
|
|
logger.error(f"An error occurred while downloading {model_name}: {str(e)}")
|
|
return None
|
|
return model_dest
|
|
|
|
|
|
# ---------------------------------------------
|
|
def update_config_file(successfully_downloaded: dict, config_file: Path):
|
|
config_file = (
|
|
Path(config_file) if config_file is not None else default_config_file()
|
|
)
|
|
|
|
# In some cases (incomplete setup, etc), the default configs directory might be missing.
|
|
# Create it if it doesn't exist.
|
|
# this check is ignored if opt.config_file is specified - user is assumed to know what they
|
|
# are doing if they are passing a custom config file from elsewhere.
|
|
if config_file is default_config_file() and not config_file.parent.exists():
|
|
configs_src = Dataset_path.parent
|
|
configs_dest = default_config_file().parent
|
|
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
|
|
|
yaml = new_config_file_contents(successfully_downloaded, config_file)
|
|
|
|
try:
|
|
backup = None
|
|
if os.path.exists(config_file):
|
|
logger.warning(
|
|
f"{config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
|
|
)
|
|
backup = config_file.with_suffix(".yaml.orig")
|
|
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
|
|
if sys.platform == "win32" and backup.is_file():
|
|
backup.unlink()
|
|
config_file.rename(backup)
|
|
|
|
with TemporaryFile() as tmp:
|
|
tmp.write(Config_preamble.encode())
|
|
tmp.write(yaml.encode())
|
|
|
|
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
|
|
tmp.seek(0)
|
|
new_config.write(tmp.read())
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error creating config file {config_file}: {str(e)}")
|
|
if backup is not None:
|
|
logger.info("restoring previous config file")
|
|
## workaround, for WinError 183, see above
|
|
if sys.platform == "win32" and config_file.is_file():
|
|
config_file.unlink()
|
|
backup.rename(config_file)
|
|
return
|
|
|
|
logger.info(f"Successfully created new configuration file {config_file}")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def new_config_file_contents(
|
|
successfully_downloaded: dict,
|
|
config_file: Path,
|
|
) -> str:
|
|
if config_file.exists():
|
|
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
|
|
else:
|
|
conf = OmegaConf.create()
|
|
|
|
default_selected = None
|
|
for model in successfully_downloaded:
|
|
# a bit hacky - what we are doing here is seeing whether a checkpoint
|
|
# version of the model was previously defined, and whether the current
|
|
# model is a diffusers (indicated with a path)
|
|
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
|
|
delete_weights(model, conf[model])
|
|
|
|
stanza = {}
|
|
mod = initial_models()[model]
|
|
stanza["description"] = mod["description"]
|
|
stanza["repo_id"] = mod["repo_id"]
|
|
stanza["format"] = mod["format"]
|
|
# diffusers don't need width and height (probably .ckpt doesn't either)
|
|
# so we no longer require these in INITIAL_MODELS.yaml
|
|
if "width" in mod:
|
|
stanza["width"] = mod["width"]
|
|
if "height" in mod:
|
|
stanza["height"] = mod["height"]
|
|
if "file" in mod:
|
|
stanza["weights"] = os.path.relpath(
|
|
successfully_downloaded[model], start=config.root_dir
|
|
)
|
|
stanza["config"] = os.path.normpath(
|
|
os.path.join(sd_configs(), mod["config"])
|
|
)
|
|
if "vae" in mod:
|
|
if "file" in mod["vae"]:
|
|
stanza["vae"] = os.path.normpath(
|
|
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
|
|
)
|
|
else:
|
|
stanza["vae"] = mod["vae"]
|
|
if mod.get("default", False):
|
|
stanza["default"] = True
|
|
default_selected = True
|
|
|
|
conf[model] = stanza
|
|
|
|
# if no default model was chosen, then we select the first
|
|
# one in the list
|
|
if not default_selected:
|
|
conf[list(successfully_downloaded.keys())[0]]["default"] = True
|
|
|
|
return OmegaConf.to_yaml(conf)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def delete_weights(model_name: str, conf_stanza: dict):
|
|
if not (weights := conf_stanza.get("weights")):
|
|
return
|
|
if re.match("/VAE/", conf_stanza.get("config")):
|
|
return
|
|
|
|
logger.warning(
|
|
f"\nThe checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
|
|
)
|
|
|
|
weights = Path(weights)
|
|
if not weights.is_absolute():
|
|
weights = config.root_dir / weights
|
|
try:
|
|
weights.unlink()
|
|
except OSError as e:
|
|
logger.error(str(e))
|