InvokeAI/invokeai/backend/model_management/model_manager.py

797 lines
30 KiB
Python

"""This module manages the InvokeAI `models.yaml` file, mapping
symbolic diffusers model names to the paths and repo_ids used
by the underlying `from_pretrained()` call.
For fetching models, use manager.get_model('symbolic name'). This will
return a SDModelInfo object that contains the following attributes:
* context -- a context manager Generator that loads and locks the
model into GPU VRAM and returns the model for use.
See below for usage.
* name -- symbolic name of the model
* hash -- unique hash for the model
* location -- path or repo_id of the model
* revision -- revision of the model if coming from a repo id,
e.g. 'fp16'
* precision -- torch precision of the model
* status -- a ModelStatus enum corresponding to one of
'not_loaded', 'in_ram', 'in_vram' or 'active'
Typical usage:
from invokeai.backend import ModelManager
manager = ModelManager(config_path='./configs/models.yaml',max_models=4)
model_info = manager.get_model('stable-diffusion-1.5')
with model_info.context as my_model:
my_model.latents_from_embeddings(...)
The manager uses the underlying ModelCache class to keep
frequently-used models in RAM and move them into GPU as needed for
generation operations. The ModelCache object can be accessed using
the manager's "cache" attribute.
Other methods provided by ModelManager support importing, editing,
converting and deleting models.
"""
from __future__ import annotations
import os
import re
import textwrap
from dataclasses import dataclass
from enum import Enum, auto
from pathlib import Path
from shutil import rmtree
from typing import Union, Callable, types
import safetensors
import safetensors.torch
import torch
import invokeai.backend.util.logging as logger
from huggingface_hub import scan_cache_dir
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from invokeai.backend.globals import Globals, global_cache_dir, global_resolve_path
from .model_cache import Generator, ModelClass, ModelCache, SDModelType, ModelStatus, LegacyInfo
from ..util import CUDA_DEVICE
# wanted to use pydantic here, but Generator objects not supported
@dataclass
class SDModelInfo():
context: Generator[ModelClass, None, None]
name: str
hash: str
location: Union[Path,str]
precision: torch.dtype
subfolder: Path = None
revision: str = None
_cache: ModelCache = None
def status(self)->ModelStatus:
'''Return load status of this model as a model_cache.ModelStatus enum'''
if not self._cache:
return ModelStatus.unknown
return self._cache.status(
self.location,
revision = self.revision,
subfolder = self.subfolder
)
class InvalidModelError(Exception):
"Raised when an invalid model is requested"
pass
class SDLegacyType(Enum):
V1 = auto()
V1_INPAINT = auto()
V2 = auto()
V2_e = auto()
V2_v = auto()
UNKNOWN = auto()
DEFAULT_MAX_MODELS = 2
class ModelManager(object):
"""
High-level interface to model management.
"""
logger: types.ModuleType = logger
def __init__(
self,
config_path: Path,
device_type: torch.device = CUDA_DEVICE,
precision: torch.dtype = torch.float16,
max_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
logger: types.ModuleType = logger,
):
"""
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
self.config_path = config_path
self.config = OmegaConf.load(self.config_path)
self.cache = ModelCache(
max_models=max_models,
execution_device = device_type,
precision = precision,
sequential_offload = sequential_offload,
logger = logger,
)
self.logger = logger
def valid_model(self, model_name: str) -> bool:
"""
Given a model name, returns True if it is a valid
identifier.
"""
return model_name in self.config
def get_model(self,
model_name: str = None,
submodel: SDModelType=None,
) -> SDModelInfo:
"""Given a model named identified in models.yaml, return
an SDModelInfo object describing it.
:param model_name: symbolic name of the model in models.yaml
:param submodel: an SDModelType enum indicating the portion of
the model to retrieve (e.g. SDModelType.vae)
"""
if not model_name:
model_name = self.default_model()
if not self.valid_model(model_name):
raise InvalidModelError(
f'"{model_name}" is not a known model name. Please check your models.yaml file'
)
# get the required loading info out of the config file
mconfig = self.config[model_name]
format = mconfig.get('format','diffusers')
legacy = None
if format=='ckpt':
location = global_resolve_path(mconfig.weights)
legacy = LegacyInfo(
config_file = global_resolve_path(mconfig.config),
)
if mconfig.get('vae'):
legacy.vae_file = global_resolve_path(mconfig.vae)
elif format=='diffusers':
location = mconfig.repo_id
revision = mconfig.get('revision')
else:
raise InvalidModelError(
f'"{model_name}" has an unknown format {format}'
)
subfolder = mconfig.get('subfolder')
hash = self.cache.model_hash(location,revision)
vae = (None,None)
try:
vae_id = mconfig.vae.repo_id
vae = (SDModelType.vae,vae_id)
except Exception:
pass
model_context = self.cache.get_model(
location,
revision = revision,
subfolder = subfolder,
legacy_info = legacy,
submodel = submodel,
attach_model_part=vae,
)
return SDModelInfo(
context = model_context,
name = model_name,
hash = hash,
location = location,
revision = revision,
precision = self.cache.precision,
subfolder = subfolder,
_cache = self.cache
)
def default_model(self) -> str | None:
"""
Returns the name of the default model, or None
if none is defined.
"""
for model_name in self.config:
if self.config[model_name].get("default"):
return model_name
return list(self.config.keys())[0] # first one
def set_default_model(self, model_name: str) -> None:
"""
Set the default model. The change will not take
effect until you call model_manager.commit()
"""
assert model_name in self.model_names(), f"unknown model '{model_name}'"
config = self.config
for model in config:
config[model].pop("default", None)
config[model_name]["default"] = True
def model_info(self, model_name: str) -> dict:
"""
Given a model name returns the OmegaConf (dict-like) object describing it.
"""
if model_name not in self.config:
return None
return self.config[model_name]
def model_names(self) -> list[str]:
"""
Return a list consisting of all the names of models defined in models.yaml
"""
return list(self.config.keys())
def is_legacy(self, model_name: str) -> bool:
"""
Return true if this is a legacy (.ckpt) model
"""
# if we are converting legacy files automatically, then
# there are no legacy ckpts!
if Globals.ckpt_convert:
return False
info = self.model_info(model_name)
if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")):
return True
return False
def list_models(self) -> dict:
"""
Return a dict of models in the format:
{ model_name1: {'status': ('active'|'cached'|'not loaded'),
'description': description,
'format': ('ckpt'|'diffusers'|'vae'),
},
model_name2: { etc }
Please use model_manager.models() to get all the model names,
model_manager.model_info('model-name') to get the stanza for the model
named 'model-name', and model_manager.config to get the full OmegaConf
object derived from models.yaml
"""
models = {}
for name in sorted(self.config, key=str.casefold):
stanza = self.config[name]
# don't include VAEs in listing (legacy style)
if "config" in stanza and "/VAE/" in stanza["config"]:
continue
models[name] = dict()
format = stanza.get("format", "ckpt") # Determine Format
# Common Attribs
status = self.cache.status(
stanza.get('weights') or stanza.get('repo_id'),
revision=stanza.get('revision'),
subfolder=stanza.get('subfolder')
)
description = stanza.get("description", None)
models[name].update(
description=description,
format=format,
status=status.value
)
# Checkpoint Config Parse
if format == "ckpt":
models[name].update(
config=str(stanza.get("config", None)),
weights=str(stanza.get("weights", None)),
vae=str(stanza.get("vae", None)),
width=str(stanza.get("width", 512)),
height=str(stanza.get("height", 512)),
)
# Diffusers Config Parse
if vae := stanza.get("vae", None):
if isinstance(vae, DictConfig):
vae = dict(
repo_id=str(vae.get("repo_id", None)),
path=str(vae.get("path", None)),
subfolder=str(vae.get("subfolder", None)),
)
if format == "diffusers":
models[name].update(
vae=vae,
repo_id=str(stanza.get("repo_id", None)),
path=str(stanza.get("path", None)),
)
return models
def print_models(self) -> None:
"""
Print a table of models, their descriptions, and load status
"""
models = self.list_models()
for name in models:
if models[name]["format"] == "vae":
continue
line = f'{name:25s} {models[name]["status"]:>15s} {models[name]["format"]:10s} {models[name]["description"]}'
if models[name]["status"] == "active":
line = f"\033[1m{line}\033[0m"
print(line)
def del_model(self, model_name: str, delete_files: bool = False) -> None:
"""
Delete the named model.
"""
omega = self.config
if model_name not in omega:
self.logger.error(f"Unknown model {model_name}")
return
# save these for use in deletion later
conf = omega[model_name]
repo_id = conf.get("repo_id", None)
path = self._abs_path(conf.get("path", None))
weights = self._abs_path(conf.get("weights", None))
del omega[model_name]
if model_name in self.stack:
self.stack.remove(model_name)
if delete_files:
if weights:
self.logger.info(f"Deleting file {weights}")
Path(weights).unlink(missing_ok=True)
elif path:
self.logger.info(f"Deleting directory {path}")
rmtree(path, ignore_errors=True)
elif repo_id:
self.logger.info(f"Deleting the cached model directory for {repo_id}")
self._delete_model_from_cache(repo_id)
def add_model(
self, model_name: str, model_attributes: dict, clobber: bool = False
) -> None:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory and the
method will return True. Will fail with an assertion error if provided
attributes are incorrect or the model name is missing.
"""
omega = self.config
assert "format" in model_attributes, 'missing required field "format"'
if model_attributes["format"] == "diffusers":
assert (
"description" in model_attributes
), 'required field "description" is missing'
assert (
"path" in model_attributes or "repo_id" in model_attributes
), 'model must have either the "path" or "repo_id" fields defined'
else:
for field in ("description", "weights", "height", "width", "config"):
assert field in model_attributes, f"required field {field} is missing"
assert (
clobber or model_name not in omega
), f'attempt to overwrite existing model definition "{model_name}"'
omega[model_name] = model_attributes
if "weights" in omega[model_name]:
omega[model_name]["weights"].replace("\\", "/")
if clobber:
self._invalidate_cached_model(model_name)
def import_diffuser_model(
self,
repo_or_path: Union[str, Path],
model_name: str = None,
description: str = None,
vae: dict = None,
commit_to_conf: Path = None,
) -> bool:
"""
Attempts to install the indicated diffuser model and returns True if successful.
"repo_or_path" can be either a repo-id or a path-like object corresponding to the
top of a downloaded diffusers directory.
You can optionally provide a model name and/or description. If not provided,
then these will be derived from the repo name. If you provide a commit_to_conf
path to the configuration file, then the new entry will be committed to the
models.yaml file.
"""
model_name = model_name or Path(repo_or_path).stem
model_description = description or f"Imported diffusers model {model_name}"
new_config = dict(
description=model_description,
vae=vae,
format="diffusers",
)
if isinstance(repo_or_path, Path) and repo_or_path.exists():
new_config.update(path=str(repo_or_path))
else:
new_config.update(repo_id=repo_or_path)
self.add_model(model_name, new_config, True)
if commit_to_conf:
self.commit(commit_to_conf)
return model_name
@classmethod
def probe_model_type(self, checkpoint: dict) -> SDLegacyType:
"""
Given a pickle or safetensors model object, probes contents
of the object and returns an SDLegacyType indicating its
format. Valid return values include:
SDLegacyType.V1
SDLegacyType.V1_INPAINT
SDLegacyType.V2 (V2 prediction type unknown)
SDLegacyType.V2_e (V2 using 'epsilon' prediction type)
SDLegacyType.V2_v (V2 using 'v_prediction' prediction type)
SDLegacyType.UNKNOWN
"""
global_step = checkpoint.get("global_step")
state_dict = checkpoint.get("state_dict") or checkpoint
try:
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if global_step == 220000:
return SDLegacyType.V2_e
elif global_step == 110000:
return SDLegacyType.V2_v
else:
return SDLegacyType.V2
# otherwise we assume a V1 file
in_channels = state_dict[
"model.diffusion_model.input_blocks.0.0.weight"
].shape[1]
if in_channels == 9:
return SDLegacyType.V1_INPAINT
elif in_channels == 4:
return SDLegacyType.V1
else:
return SDLegacyType.UNKNOWN
except KeyError:
return SDLegacyType.UNKNOWN
def heuristic_import(
self,
path_url_or_repo: str,
model_name: str = None,
description: str = None,
model_config_file: Path = None,
commit_to_conf: Path = None,
config_file_callback: Callable[[Path], Path] = None,
) -> str:
"""Accept a string which could be:
- a HF diffusers repo_id
- a URL pointing to a legacy .ckpt or .safetensors file
- a local path pointing to a legacy .ckpt or .safetensors file
- a local directory containing .ckpt and .safetensors files
- a local directory containing a diffusers model
After determining the nature of the model and downloading it
(if necessary), the file is probed to determine the correct
configuration file (if needed) and it is imported.
The model_name and/or description can be provided. If not, they will
be generated automatically.
If commit_to_conf is provided, the newly loaded model will be written
to the `models.yaml` file at the indicated path. Otherwise, the changes
will only remain in memory.
The routine will do its best to figure out the config file
needed to convert legacy checkpoint file, but if it can't it
will call the config_file_callback routine, if provided. The
callback accepts a single argument, the Path to the checkpoint
file, and returns a Path to the config file to use.
The (potentially derived) name of the model is returned on
success, or None on failure. When multiple models are added
from a directory, only the last imported one is returned.
"""
model_path: Path = None
thing = path_url_or_repo # to save typing
self.logger.info(f"Probing {thing} for import")
if thing.startswith(("http:", "https:", "ftp:")):
self.logger.info(f"{thing} appears to be a URL")
model_path = self._resolve_path(
thing, "models/ldm/stable-diffusion-v1"
) # _resolve_path does a download if needed
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import")
return
else:
self.logger.debug(f"{thing} appears to be a checkpoint file on disk")
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
self.logger.debug(f"{thing} appears to be a diffusers file on disk")
model_name = self.import_diffuser_model(
thing,
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
model_name=model_name,
description=description,
commit_to_conf=commit_to_conf,
)
elif Path(thing).is_dir():
if (Path(thing) / "model_index.json").exists():
self.logger.debug(f"{thing} appears to be a diffusers model.")
model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf
)
else:
self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import")
for m in list(Path(thing).rglob("*.ckpt")) + list(
Path(thing).rglob("*.safetensors")
):
if model_name := self.heuristic_import(
str(m), commit_to_conf=commit_to_conf
):
self.logger.info(f"{model_name} successfully imported")
return model_name
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id")
model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf
)
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
return model_name
else:
self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
# Model_path is set in the event of a legacy checkpoint file.
# If not set, we're all done
if not model_path:
return
if model_path.stem in self.config: # already imported
self.logger.debug("Already imported. Skipping")
return model_path.stem
# another round of heuristics to guess the correct config file.
checkpoint = None
if model_path.suffix in [".ckpt", ".pt"]:
self.scan_model(model_path, model_path)
checkpoint = torch.load(model_path)
else:
checkpoint = safetensors.torch.load_file(model_path)
# additional probing needed if no config file provided
if model_config_file is None:
# look for a like-named .yaml file in same directory
if model_path.with_suffix(".yaml").exists():
model_config_file = model_path.with_suffix(".yaml")
self.logger.debug(f"Using config file {model_config_file.name}")
else:
model_type = self.probe_model_type(checkpoint)
if model_type == SDLegacyType.V1:
self.logger.debug("SD-v1 model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inference.yaml"
)
elif model_type == SDLegacyType.V1_INPAINT:
self.logger.debug("SD-v1 inpainting model detected")
model_config_file = Path(
Globals.root,
"configs/stable-diffusion/v1-inpainting-inference.yaml",
)
elif model_type == SDLegacyType.V2_v:
self.logger.debug("SD-v2-v model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
)
elif model_type == SDLegacyType.V2_e:
self.logger.debug("SD-v2-e model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference.yaml"
)
elif model_type == SDLegacyType.V2:
self.logger.warning(
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
)
return
else:
self.logger.warning(
f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
)
return
if not model_config_file and config_file_callback:
model_config_file = config_file_callback(model_path)
# despite our best efforts, we could not find a model config file, so give up
if not model_config_file:
return
# look for a custom vae, a like-named file ending with .vae in the same directory
vae_path = None
for suffix in ["pt", "ckpt", "safetensors"]:
if (model_path.with_suffix(f".vae.{suffix}")).exists():
vae_path = model_path.with_suffix(f".vae.{suffix}")
self.logger.debug(f"Using VAE file {vae_path.name}")
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
diffuser_path = Path(
Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem
)
model_name = self.convert_and_import(
model_path,
diffusers_path=diffuser_path,
vae=vae,
vae_path=str(vae_path),
model_name=model_name,
model_description=description,
original_config_file=model_config_file,
commit_to_conf=commit_to_conf,
scan_needed=False,
)
return model_name
def convert_and_import(
self,
ckpt_path: Path,
diffusers_path: Path,
model_name=None,
model_description=None,
vae: dict = None,
vae_path: Path = None,
original_config_file: Path = None,
commit_to_conf: Path = None,
scan_needed: bool = True,
) -> str:
"""
Convert a legacy ckpt weights file to diffuser model and import
into models.yaml.
"""
ckpt_path = self._resolve_path(ckpt_path, "models/ldm/stable-diffusion-v1")
if original_config_file:
original_config_file = self._resolve_path(
original_config_file, "configs/stable-diffusion"
)
new_config = None
if diffusers_path.exists():
self.logger.error(
f"The path {str(diffusers_path)} already exists. Please move or remove it and try again."
)
return
model_name = model_name or diffusers_path.name
model_description = model_description or f"Converted version of {model_name}"
self.logger.debug(f"Converting {model_name} to diffusers (30-60s)")
# to avoid circular import errors
from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
try:
# By passing the specified VAE to the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file
vae_model = None
if vae:
vae_model = self._load_vae(vae)
vae_path = None
convert_ckpt_to_diffusers(
ckpt_path,
diffusers_path,
extract_ema=True,
original_config_file=original_config_file,
vae=vae_model,
vae_path=vae_path,
scan_needed=scan_needed,
)
self.logger.debug(
f"Success. Converted model is now located at {str(diffusers_path)}"
)
self.logger.debug(f"Writing new config file entry for {model_name}")
new_config = dict(
path=str(diffusers_path),
description=model_description,
format="diffusers",
)
if model_name in self.config:
self.del_model(model_name)
self.add_model(model_name, new_config, True)
if commit_to_conf:
self.commit(commit_to_conf)
self.logger.debug("Conversion succeeded")
except Exception as e:
self.logger.warning(f"Conversion failed: {str(e)}")
self.logger.warning(
"If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
)
return model_name
def search_models(self, search_folder):
self.logger.info(f"Finding Models In: {search_folder}")
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
ckpt_files = [x for x in models_folder_ckpt if x.is_file()]
safetensor_files = [x for x in models_folder_safetensors if x.is_file()]
files = ckpt_files + safetensor_files
found_models = []
for file in files:
location = str(file.resolve()).replace("\\", "/")
if (
"model.safetensors" not in location
and "diffusion_pytorch_model.safetensors" not in location
):
found_models.append({"name": file.stem, "location": location})
return search_folder, found_models
def commit(self) -> None:
"""
Write current configuration out to the indicated file.
"""
yaml_str = OmegaConf.to_yaml(self.config)
config_file_path = self.config_path
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
with open(tmpfile, "w", encoding="utf-8") as outfile:
outfile.write(self.preamble())
outfile.write(yaml_str)
os.replace(tmpfile, config_file_path)
def preamble(self) -> str:
"""
Returns the preamble for the config file.
"""
return textwrap.dedent(
"""\
# This file describes the alternative machine learning models
# available to InvokeAI script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
"""
)
@classmethod
def _delete_model_from_cache(cls,repo_id):
cache_info = scan_cache_dir(global_cache_dir("hub"))
# I'm sure there is a way to do this with comprehensions
# but the code quickly became incomprehensible!
hashes_to_delete = set()
for repo in cache_info.repos:
if repo.repo_id == repo_id:
for revision in repo.revisions:
hashes_to_delete.add(revision.commit_hash)
strategy = cache_info.delete_revisions(*hashes_to_delete)
cls.logger.warning(
f"Deletion of this model is expected to free {strategy.expected_freed_size_str}"
)
strategy.execute()
@staticmethod
def _abs_path(path: str | Path) -> Path:
if path is None or Path(path).is_absolute():
return path
return Path(Globals.root, path).resolve()