mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
e19aab4a9b
Update main.py Update ddpm.py Update personalized.py Update personalized_style.py Update v1-finetune.yaml Update environment-mac.yaml Rename v1-finetune.yaml to v1-m1-finetune.yaml Create v1-finetune.yaml Update main.py Update main.py Update environment-mac.yaml Update v1-inference.yaml
995 lines
33 KiB
Python
995 lines
33 KiB
Python
import argparse, os, sys, datetime, glob, importlib, csv
|
|
import numpy as np
|
|
import time
|
|
import torch
|
|
|
|
import torchvision
|
|
import pytorch_lightning as pl
|
|
|
|
from packaging import version
|
|
from omegaconf import OmegaConf
|
|
from torch.utils.data import random_split, DataLoader, Dataset, Subset
|
|
from functools import partial
|
|
from PIL import Image
|
|
|
|
from pytorch_lightning import seed_everything
|
|
from pytorch_lightning.trainer import Trainer
|
|
from pytorch_lightning.callbacks import (
|
|
ModelCheckpoint,
|
|
Callback,
|
|
LearningRateMonitor,
|
|
)
|
|
from pytorch_lightning.utilities.distributed import rank_zero_only
|
|
from pytorch_lightning.utilities import rank_zero_info
|
|
|
|
from ldm.data.base import Txt2ImgIterableBaseDataset
|
|
from ldm.util import instantiate_from_config
|
|
|
|
def fix_func(orig):
|
|
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
|
def new_func(*args, **kw):
|
|
device = kw.get("device", "mps")
|
|
kw["device"]="cpu"
|
|
return orig(*args, **kw).to(device)
|
|
return new_func
|
|
return orig
|
|
|
|
torch.rand = fix_func(torch.rand)
|
|
torch.rand_like = fix_func(torch.rand_like)
|
|
torch.randn = fix_func(torch.randn)
|
|
torch.randn_like = fix_func(torch.randn_like)
|
|
torch.randint = fix_func(torch.randint)
|
|
torch.randint_like = fix_func(torch.randint_like)
|
|
torch.bernoulli = fix_func(torch.bernoulli)
|
|
torch.multinomial = fix_func(torch.multinomial)
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
print(f'Loading model from {ckpt}')
|
|
pl_sd = torch.load(ckpt, map_location='cpu')
|
|
sd = pl_sd['state_dict']
|
|
config.model.params.ckpt_path = ckpt
|
|
model = instantiate_from_config(config.model)
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
if len(m) > 0 and verbose:
|
|
print('missing keys:')
|
|
print(m)
|
|
if len(u) > 0 and verbose:
|
|
print('unexpected keys:')
|
|
print(u)
|
|
|
|
if torch.cuda.is_available():
|
|
model.cuda()
|
|
return model
|
|
|
|
|
|
def get_parser(**parser_kwargs):
|
|
def str2bool(v):
|
|
if isinstance(v, bool):
|
|
return v
|
|
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
|
return True
|
|
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
|
|
return False
|
|
else:
|
|
raise argparse.ArgumentTypeError('Boolean value expected.')
|
|
|
|
parser = argparse.ArgumentParser(**parser_kwargs)
|
|
parser.add_argument(
|
|
'-n',
|
|
'--name',
|
|
type=str,
|
|
const=True,
|
|
default='',
|
|
nargs='?',
|
|
help='postfix for logdir',
|
|
)
|
|
parser.add_argument(
|
|
'-r',
|
|
'--resume',
|
|
type=str,
|
|
const=True,
|
|
default='',
|
|
nargs='?',
|
|
help='resume from logdir or checkpoint in logdir',
|
|
)
|
|
parser.add_argument(
|
|
'-b',
|
|
'--base',
|
|
nargs='*',
|
|
metavar='base_config.yaml',
|
|
help='paths to base configs. Loaded from left-to-right. '
|
|
'Parameters can be overwritten or added with command-line options of the form `--key value`.',
|
|
default=list(),
|
|
)
|
|
parser.add_argument(
|
|
'-t',
|
|
'--train',
|
|
type=str2bool,
|
|
const=True,
|
|
default=False,
|
|
nargs='?',
|
|
help='train',
|
|
)
|
|
parser.add_argument(
|
|
'--no-test',
|
|
type=str2bool,
|
|
const=True,
|
|
default=False,
|
|
nargs='?',
|
|
help='disable test',
|
|
)
|
|
parser.add_argument(
|
|
'-p', '--project', help='name of new or path to existing project'
|
|
)
|
|
parser.add_argument(
|
|
'-d',
|
|
'--debug',
|
|
type=str2bool,
|
|
nargs='?',
|
|
const=True,
|
|
default=False,
|
|
help='enable post-mortem debugging',
|
|
)
|
|
parser.add_argument(
|
|
'-s',
|
|
'--seed',
|
|
type=int,
|
|
default=23,
|
|
help='seed for seed_everything',
|
|
)
|
|
parser.add_argument(
|
|
'-f',
|
|
'--postfix',
|
|
type=str,
|
|
default='',
|
|
help='post-postfix for default name',
|
|
)
|
|
parser.add_argument(
|
|
'-l',
|
|
'--logdir',
|
|
type=str,
|
|
default='logs',
|
|
help='directory for logging dat shit',
|
|
)
|
|
parser.add_argument(
|
|
'--scale_lr',
|
|
type=str2bool,
|
|
nargs='?',
|
|
const=True,
|
|
default=True,
|
|
help='scale base-lr by ngpu * batch_size * n_accumulate',
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--datadir_in_name',
|
|
type=str2bool,
|
|
nargs='?',
|
|
const=True,
|
|
default=True,
|
|
help='Prepend the final directory in the data_root to the output directory name',
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--actual_resume',
|
|
type=str,
|
|
default='',
|
|
help='Path to model to actually resume from',
|
|
)
|
|
parser.add_argument(
|
|
'--data_root',
|
|
type=str,
|
|
required=True,
|
|
help='Path to directory with training images',
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--embedding_manager_ckpt',
|
|
type=str,
|
|
default='',
|
|
help='Initialize embedding manager from a checkpoint',
|
|
)
|
|
parser.add_argument(
|
|
'--placeholder_tokens', type=str, nargs='+', default=['*'],
|
|
help='Placeholder token which will be used to denote the concept in future prompts')
|
|
|
|
parser.add_argument(
|
|
'--init_word',
|
|
type=str,
|
|
help='Word to use as source for initial token embedding.',
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def nondefault_trainer_args(opt):
|
|
parser = argparse.ArgumentParser()
|
|
parser = Trainer.add_argparse_args(parser)
|
|
args = parser.parse_args([])
|
|
return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
|
|
|
|
|
|
class WrappedDataset(Dataset):
|
|
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
|
|
|
|
def __init__(self, dataset):
|
|
self.data = dataset
|
|
|
|
def __len__(self):
|
|
return len(self.data)
|
|
|
|
def __getitem__(self, idx):
|
|
return self.data[idx]
|
|
|
|
|
|
def worker_init_fn(_):
|
|
worker_info = torch.utils.data.get_worker_info()
|
|
|
|
dataset = worker_info.dataset
|
|
worker_id = worker_info.id
|
|
|
|
if isinstance(dataset, Txt2ImgIterableBaseDataset):
|
|
split_size = dataset.num_records // worker_info.num_workers
|
|
# reset num_records to the true number to retain reliable length information
|
|
dataset.sample_ids = dataset.valid_ids[
|
|
worker_id * split_size : (worker_id + 1) * split_size
|
|
]
|
|
current_id = np.random.choice(len(np.random.get_state()[1]), 1)
|
|
return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
|
|
else:
|
|
return np.random.seed(np.random.get_state()[1][0] + worker_id)
|
|
|
|
|
|
class DataModuleFromConfig(pl.LightningDataModule):
|
|
def __init__(
|
|
self,
|
|
batch_size,
|
|
train=None,
|
|
validation=None,
|
|
test=None,
|
|
predict=None,
|
|
wrap=False,
|
|
num_workers=None,
|
|
shuffle_test_loader=False,
|
|
use_worker_init_fn=False,
|
|
shuffle_val_dataloader=False,
|
|
):
|
|
super().__init__()
|
|
self.batch_size = batch_size
|
|
self.dataset_configs = dict()
|
|
self.num_workers = (
|
|
num_workers if num_workers is not None else batch_size * 2
|
|
)
|
|
self.use_worker_init_fn = use_worker_init_fn
|
|
if train is not None:
|
|
self.dataset_configs['train'] = train
|
|
self.train_dataloader = self._train_dataloader
|
|
if validation is not None:
|
|
self.dataset_configs['validation'] = validation
|
|
self.val_dataloader = partial(
|
|
self._val_dataloader, shuffle=shuffle_val_dataloader
|
|
)
|
|
if test is not None:
|
|
self.dataset_configs['test'] = test
|
|
self.test_dataloader = partial(
|
|
self._test_dataloader, shuffle=shuffle_test_loader
|
|
)
|
|
if predict is not None:
|
|
self.dataset_configs['predict'] = predict
|
|
self.predict_dataloader = self._predict_dataloader
|
|
self.wrap = wrap
|
|
|
|
def prepare_data(self):
|
|
for data_cfg in self.dataset_configs.values():
|
|
instantiate_from_config(data_cfg)
|
|
|
|
def setup(self, stage=None):
|
|
self.datasets = dict(
|
|
(k, instantiate_from_config(self.dataset_configs[k]))
|
|
for k in self.dataset_configs
|
|
)
|
|
if self.wrap:
|
|
for k in self.datasets:
|
|
self.datasets[k] = WrappedDataset(self.datasets[k])
|
|
|
|
def _train_dataloader(self):
|
|
is_iterable_dataset = isinstance(
|
|
self.datasets['train'], Txt2ImgIterableBaseDataset
|
|
)
|
|
if is_iterable_dataset or self.use_worker_init_fn:
|
|
init_fn = worker_init_fn
|
|
else:
|
|
init_fn = None
|
|
return DataLoader(
|
|
self.datasets['train'],
|
|
batch_size=self.batch_size,
|
|
num_workers=self.num_workers,
|
|
shuffle=False if is_iterable_dataset else True,
|
|
worker_init_fn=init_fn,
|
|
)
|
|
|
|
def _val_dataloader(self, shuffle=False):
|
|
if (
|
|
isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset)
|
|
or self.use_worker_init_fn
|
|
):
|
|
init_fn = worker_init_fn
|
|
else:
|
|
init_fn = None
|
|
return DataLoader(
|
|
self.datasets['validation'],
|
|
batch_size=self.batch_size,
|
|
num_workers=self.num_workers,
|
|
worker_init_fn=init_fn,
|
|
shuffle=shuffle,
|
|
)
|
|
|
|
def _test_dataloader(self, shuffle=False):
|
|
is_iterable_dataset = isinstance(
|
|
self.datasets['train'], Txt2ImgIterableBaseDataset
|
|
)
|
|
if is_iterable_dataset or self.use_worker_init_fn:
|
|
init_fn = worker_init_fn
|
|
else:
|
|
init_fn = None
|
|
|
|
# do not shuffle dataloader for iterable dataset
|
|
shuffle = shuffle and (not is_iterable_dataset)
|
|
|
|
return DataLoader(
|
|
self.datasets['test'],
|
|
batch_size=self.batch_size,
|
|
num_workers=self.num_workers,
|
|
worker_init_fn=init_fn,
|
|
shuffle=shuffle,
|
|
)
|
|
|
|
def _predict_dataloader(self, shuffle=False):
|
|
if (
|
|
isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset)
|
|
or self.use_worker_init_fn
|
|
):
|
|
init_fn = worker_init_fn
|
|
else:
|
|
init_fn = None
|
|
return DataLoader(
|
|
self.datasets['predict'],
|
|
batch_size=self.batch_size,
|
|
num_workers=self.num_workers,
|
|
worker_init_fn=init_fn,
|
|
)
|
|
|
|
|
|
class SetupCallback(Callback):
|
|
def __init__(
|
|
self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config
|
|
):
|
|
super().__init__()
|
|
self.resume = resume
|
|
self.now = now
|
|
self.logdir = logdir
|
|
self.ckptdir = ckptdir
|
|
self.cfgdir = cfgdir
|
|
self.config = config
|
|
self.lightning_config = lightning_config
|
|
|
|
def on_keyboard_interrupt(self, trainer, pl_module):
|
|
if trainer.global_rank == 0:
|
|
print('Summoning checkpoint.')
|
|
ckpt_path = os.path.join(self.ckptdir, 'last.ckpt')
|
|
trainer.save_checkpoint(ckpt_path)
|
|
|
|
def on_pretrain_routine_start(self, trainer, pl_module):
|
|
if trainer.global_rank == 0:
|
|
# Create logdirs and save configs
|
|
os.makedirs(self.logdir, exist_ok=True)
|
|
os.makedirs(self.ckptdir, exist_ok=True)
|
|
os.makedirs(self.cfgdir, exist_ok=True)
|
|
|
|
if 'callbacks' in self.lightning_config:
|
|
if (
|
|
'metrics_over_trainsteps_checkpoint'
|
|
in self.lightning_config['callbacks']
|
|
):
|
|
os.makedirs(
|
|
os.path.join(self.ckptdir, 'trainstep_checkpoints'),
|
|
exist_ok=True,
|
|
)
|
|
print('Project config')
|
|
print(OmegaConf.to_yaml(self.config))
|
|
OmegaConf.save(
|
|
self.config,
|
|
os.path.join(self.cfgdir, '{}-project.yaml'.format(self.now)),
|
|
)
|
|
|
|
print('Lightning config')
|
|
print(OmegaConf.to_yaml(self.lightning_config))
|
|
OmegaConf.save(
|
|
OmegaConf.create({'lightning': self.lightning_config}),
|
|
os.path.join(
|
|
self.cfgdir, '{}-lightning.yaml'.format(self.now)
|
|
),
|
|
)
|
|
|
|
else:
|
|
# ModelCheckpoint callback created log directory --- remove it
|
|
if not self.resume and os.path.exists(self.logdir):
|
|
dst, name = os.path.split(self.logdir)
|
|
dst = os.path.join(dst, 'child_runs', name)
|
|
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
|
try:
|
|
os.rename(self.logdir, dst)
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
|
|
class ImageLogger(Callback):
|
|
def __init__(
|
|
self,
|
|
batch_frequency,
|
|
max_images,
|
|
clamp=True,
|
|
increase_log_steps=True,
|
|
rescale=True,
|
|
disabled=False,
|
|
log_on_batch_idx=False,
|
|
log_first_step=False,
|
|
log_images_kwargs=None,
|
|
):
|
|
super().__init__()
|
|
self.rescale = rescale
|
|
self.batch_freq = batch_frequency
|
|
self.max_images = max_images
|
|
self.logger_log_images = { pl.loggers.TestTubeLogger: self._testtube, } if torch.cuda.is_available() else { }
|
|
self.log_steps = [
|
|
2**n for n in range(int(np.log2(self.batch_freq)) + 1)
|
|
]
|
|
if not increase_log_steps:
|
|
self.log_steps = [self.batch_freq]
|
|
self.clamp = clamp
|
|
self.disabled = disabled
|
|
self.log_on_batch_idx = log_on_batch_idx
|
|
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
|
self.log_first_step = log_first_step
|
|
|
|
@rank_zero_only
|
|
def _testtube(self, pl_module, images, batch_idx, split):
|
|
for k in images:
|
|
grid = torchvision.utils.make_grid(images[k])
|
|
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
|
|
|
tag = f'{split}/{k}'
|
|
pl_module.logger.experiment.add_image(
|
|
tag, grid, global_step=pl_module.global_step
|
|
)
|
|
|
|
@rank_zero_only
|
|
def log_local(
|
|
self, save_dir, split, images, global_step, current_epoch, batch_idx
|
|
):
|
|
root = os.path.join(save_dir, 'images', split)
|
|
for k in images:
|
|
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
|
if self.rescale:
|
|
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
|
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
|
grid = grid.numpy()
|
|
grid = (grid * 255).astype(np.uint8)
|
|
filename = '{}_gs-{:06}_e-{:06}_b-{:06}.png'.format(
|
|
k, global_step, current_epoch, batch_idx
|
|
)
|
|
path = os.path.join(root, filename)
|
|
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
|
Image.fromarray(grid).save(path)
|
|
|
|
def log_img(self, pl_module, batch, batch_idx, split='train'):
|
|
check_idx = (
|
|
batch_idx if self.log_on_batch_idx else pl_module.global_step
|
|
)
|
|
if (
|
|
self.check_frequency(check_idx)
|
|
and hasattr( # batch_idx % self.batch_freq == 0
|
|
pl_module, 'log_images'
|
|
)
|
|
and callable(pl_module.log_images)
|
|
and self.max_images > 0
|
|
):
|
|
logger = type(pl_module.logger)
|
|
|
|
is_train = pl_module.training
|
|
if is_train:
|
|
pl_module.eval()
|
|
|
|
with torch.no_grad():
|
|
images = pl_module.log_images(
|
|
batch, split=split, **self.log_images_kwargs
|
|
)
|
|
|
|
for k in images:
|
|
N = min(images[k].shape[0], self.max_images)
|
|
images[k] = images[k][:N]
|
|
if isinstance(images[k], torch.Tensor):
|
|
images[k] = images[k].detach().cpu()
|
|
if self.clamp:
|
|
images[k] = torch.clamp(images[k], -1.0, 1.0)
|
|
|
|
self.log_local(
|
|
pl_module.logger.save_dir,
|
|
split,
|
|
images,
|
|
pl_module.global_step,
|
|
pl_module.current_epoch,
|
|
batch_idx,
|
|
)
|
|
|
|
logger_log_images = self.logger_log_images.get(
|
|
logger, lambda *args, **kwargs: None
|
|
)
|
|
logger_log_images(pl_module, images, pl_module.global_step, split)
|
|
|
|
if is_train:
|
|
pl_module.train()
|
|
|
|
def check_frequency(self, check_idx):
|
|
if (
|
|
(check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)
|
|
) and (check_idx > 0 or self.log_first_step):
|
|
try:
|
|
self.log_steps.pop(0)
|
|
except IndexError as e:
|
|
print(e)
|
|
pass
|
|
return True
|
|
return False
|
|
|
|
def on_train_batch_end(
|
|
self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None
|
|
):
|
|
if not self.disabled and (
|
|
pl_module.global_step > 0 or self.log_first_step
|
|
):
|
|
self.log_img(pl_module, batch, batch_idx, split='train')
|
|
|
|
def on_validation_batch_end(
|
|
self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None
|
|
):
|
|
if not self.disabled and pl_module.global_step > 0:
|
|
self.log_img(pl_module, batch, batch_idx, split='val')
|
|
if hasattr(pl_module, 'calibrate_grad_norm'):
|
|
if (
|
|
pl_module.calibrate_grad_norm and batch_idx % 25 == 0
|
|
) and batch_idx > 0:
|
|
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
|
|
|
|
|
|
class CUDACallback(Callback):
|
|
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
|
|
def on_train_epoch_start(self, trainer, pl_module):
|
|
# Reset the memory use counter
|
|
if torch.cuda.is_available():
|
|
torch.cuda.reset_peak_memory_stats(trainer.root_gpu)
|
|
torch.cuda.synchronize(trainer.root_gpu)
|
|
self.start_time = time.time()
|
|
|
|
def on_train_epoch_end(self, trainer, pl_module, outputs=None):
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize(trainer.root_gpu)
|
|
epoch_time = time.time() - self.start_time
|
|
|
|
try:
|
|
epoch_time = trainer.training_type_plugin.reduce(epoch_time)
|
|
rank_zero_info(f'Average Epoch time: {epoch_time:.2f} seconds')
|
|
|
|
if torch.cuda.is_available():
|
|
max_memory = (
|
|
torch.cuda.max_memory_allocated(trainer.root_gpu) / 2**20
|
|
)
|
|
max_memory = trainer.training_type_plugin.reduce(max_memory)
|
|
rank_zero_info(f'Average Peak memory {max_memory:.2f}MiB')
|
|
except AttributeError:
|
|
pass
|
|
|
|
class ModeSwapCallback(Callback):
|
|
|
|
def __init__(self, swap_step=2000):
|
|
super().__init__()
|
|
self.is_frozen = False
|
|
self.swap_step = swap_step
|
|
|
|
def on_train_epoch_start(self, trainer, pl_module):
|
|
if trainer.global_step < self.swap_step and not self.is_frozen:
|
|
self.is_frozen = True
|
|
trainer.optimizers = [pl_module.configure_opt_embedding()]
|
|
|
|
if trainer.global_step > self.swap_step and self.is_frozen:
|
|
self.is_frozen = False
|
|
trainer.optimizers = [pl_module.configure_opt_model()]
|
|
|
|
if __name__ == '__main__':
|
|
# custom parser to specify config files, train, test and debug mode,
|
|
# postfix, resume.
|
|
# `--key value` arguments are interpreted as arguments to the trainer.
|
|
# `nested.key=value` arguments are interpreted as config parameters.
|
|
# configs are merged from left-to-right followed by command line parameters.
|
|
|
|
# model:
|
|
# base_learning_rate: float
|
|
# target: path to lightning module
|
|
# params:
|
|
# key: value
|
|
# data:
|
|
# target: main.DataModuleFromConfig
|
|
# params:
|
|
# batch_size: int
|
|
# wrap: bool
|
|
# train:
|
|
# target: path to train dataset
|
|
# params:
|
|
# key: value
|
|
# validation:
|
|
# target: path to validation dataset
|
|
# params:
|
|
# key: value
|
|
# test:
|
|
# target: path to test dataset
|
|
# params:
|
|
# key: value
|
|
# lightning: (optional, has sane defaults and can be specified on cmdline)
|
|
# trainer:
|
|
# additional arguments to trainer
|
|
# logger:
|
|
# logger to instantiate
|
|
# modelcheckpoint:
|
|
# modelcheckpoint to instantiate
|
|
# callbacks:
|
|
# callback1:
|
|
# target: importpath
|
|
# params:
|
|
# key: value
|
|
|
|
now = datetime.datetime.now().strftime('%Y-%m-%dT%H-%M-%S')
|
|
|
|
# add cwd for convenience and to make classes in this file available when
|
|
# running as `python main.py`
|
|
# (in particular `main.DataModuleFromConfig`)
|
|
sys.path.append(os.getcwd())
|
|
|
|
parser = get_parser()
|
|
parser = Trainer.add_argparse_args(parser)
|
|
|
|
opt, unknown = parser.parse_known_args()
|
|
if opt.name and opt.resume:
|
|
raise ValueError(
|
|
'-n/--name and -r/--resume cannot be specified both.'
|
|
'If you want to resume training in a new log folder, '
|
|
'use -n/--name in combination with --resume_from_checkpoint'
|
|
)
|
|
if opt.resume:
|
|
if not os.path.exists(opt.resume):
|
|
raise ValueError('Cannot find {}'.format(opt.resume))
|
|
if os.path.isfile(opt.resume):
|
|
paths = opt.resume.split('/')
|
|
# idx = len(paths)-paths[::-1].index("logs")+1
|
|
# logdir = "/".join(paths[:idx])
|
|
logdir = '/'.join(paths[:-2])
|
|
ckpt = opt.resume
|
|
else:
|
|
assert os.path.isdir(opt.resume), opt.resume
|
|
logdir = opt.resume.rstrip('/')
|
|
ckpt = os.path.join(logdir, 'checkpoints', 'last.ckpt')
|
|
|
|
opt.resume_from_checkpoint = ckpt
|
|
base_configs = sorted(
|
|
glob.glob(os.path.join(logdir, 'configs/*.yaml'))
|
|
)
|
|
opt.base = base_configs + opt.base
|
|
_tmp = logdir.split('/')
|
|
nowname = _tmp[-1]
|
|
else:
|
|
if opt.name:
|
|
name = '_' + opt.name
|
|
elif opt.base:
|
|
cfg_fname = os.path.split(opt.base[0])[-1]
|
|
cfg_name = os.path.splitext(cfg_fname)[0]
|
|
name = '_' + cfg_name
|
|
else:
|
|
name = ''
|
|
|
|
if opt.datadir_in_name:
|
|
now = os.path.basename(os.path.normpath(opt.data_root)) + now
|
|
|
|
|
|
nowname = now + name + opt.postfix
|
|
logdir = os.path.join(opt.logdir, nowname)
|
|
|
|
ckptdir = os.path.join(logdir, 'checkpoints')
|
|
cfgdir = os.path.join(logdir, 'configs')
|
|
seed_everything(opt.seed)
|
|
|
|
try:
|
|
# init and save configs
|
|
configs = [OmegaConf.load(cfg) for cfg in opt.base]
|
|
cli = OmegaConf.from_dotlist(unknown)
|
|
config = OmegaConf.merge(*configs, cli)
|
|
lightning_config = config.pop('lightning', OmegaConf.create())
|
|
# merge trainer cli with config
|
|
trainer_config = lightning_config.get('trainer', OmegaConf.create())
|
|
# default to ddp
|
|
trainer_config['accelerator'] = 'ddp'
|
|
for k in nondefault_trainer_args(opt):
|
|
trainer_config[k] = getattr(opt, k)
|
|
if not 'gpus' in trainer_config:
|
|
del trainer_config['accelerator']
|
|
cpu = True
|
|
else:
|
|
gpuinfo = trainer_config['gpus']
|
|
print(f'Running on GPUs {gpuinfo}')
|
|
cpu = False
|
|
trainer_opt = argparse.Namespace(**trainer_config)
|
|
lightning_config.trainer = trainer_config
|
|
|
|
# model
|
|
|
|
# config.model.params.personalization_config.params.init_word = opt.init_word
|
|
config.model.params.personalization_config.params.embedding_manager_ckpt = (
|
|
opt.embedding_manager_ckpt
|
|
)
|
|
config.model.params.personalization_config.params.placeholder_tokens = (
|
|
opt.placeholder_tokens
|
|
)
|
|
|
|
if opt.init_word:
|
|
config.model.params.personalization_config.params.initializer_words[
|
|
0
|
|
] = opt.init_word
|
|
|
|
if opt.actual_resume:
|
|
model = load_model_from_config(config, opt.actual_resume)
|
|
else:
|
|
model = instantiate_from_config(config.model)
|
|
|
|
# trainer and callbacks
|
|
trainer_kwargs = dict()
|
|
|
|
# default logger configs
|
|
if torch.cuda.is_available():
|
|
def_logger = 'testtube'
|
|
def_logger_target = 'TestTubeLogger'
|
|
else:
|
|
def_logger = 'csv'
|
|
def_logger_target = 'CSVLogger'
|
|
default_logger_cfgs = {
|
|
'wandb': {
|
|
'target': 'pytorch_lightning.loggers.WandbLogger',
|
|
'params': {
|
|
'name': nowname,
|
|
'save_dir': logdir,
|
|
'offline': opt.debug,
|
|
'id': nowname,
|
|
},
|
|
},
|
|
def_logger: {
|
|
'target': 'pytorch_lightning.loggers.' + def_logger_target,
|
|
'params': {
|
|
'name': def_logger,
|
|
'save_dir': logdir,
|
|
},
|
|
},
|
|
}
|
|
default_logger_cfg = default_logger_cfgs[def_logger]
|
|
if 'logger' in lightning_config:
|
|
logger_cfg = lightning_config.logger
|
|
else:
|
|
logger_cfg = OmegaConf.create()
|
|
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
|
|
trainer_kwargs['logger'] = instantiate_from_config(logger_cfg)
|
|
|
|
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
|
|
# specify which metric is used to determine best models
|
|
default_modelckpt_cfg = {
|
|
'target': 'pytorch_lightning.callbacks.ModelCheckpoint',
|
|
'params': {
|
|
'dirpath': ckptdir,
|
|
'filename': '{epoch:06}',
|
|
'verbose': True,
|
|
'save_last': True,
|
|
},
|
|
}
|
|
if hasattr(model, 'monitor'):
|
|
print(f'Monitoring {model.monitor} as checkpoint metric.')
|
|
default_modelckpt_cfg['params']['monitor'] = model.monitor
|
|
default_modelckpt_cfg['params']['save_top_k'] = 1
|
|
|
|
if 'modelcheckpoint' in lightning_config:
|
|
modelckpt_cfg = lightning_config.modelcheckpoint
|
|
else:
|
|
modelckpt_cfg = OmegaConf.create()
|
|
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
|
|
print(f'Merged modelckpt-cfg: \n{modelckpt_cfg}')
|
|
if version.parse(pl.__version__) < version.parse('1.4.0'):
|
|
trainer_kwargs['checkpoint_callback'] = instantiate_from_config(
|
|
modelckpt_cfg
|
|
)
|
|
|
|
# add callback which sets up log directory
|
|
default_callbacks_cfg = {
|
|
'setup_callback': {
|
|
'target': 'main.SetupCallback',
|
|
'params': {
|
|
'resume': opt.resume,
|
|
'now': now,
|
|
'logdir': logdir,
|
|
'ckptdir': ckptdir,
|
|
'cfgdir': cfgdir,
|
|
'config': config,
|
|
'lightning_config': lightning_config,
|
|
},
|
|
},
|
|
'image_logger': {
|
|
'target': 'main.ImageLogger',
|
|
'params': {
|
|
'batch_frequency': 750,
|
|
'max_images': 4,
|
|
'clamp': True,
|
|
},
|
|
},
|
|
'learning_rate_logger': {
|
|
'target': 'main.LearningRateMonitor',
|
|
'params': {
|
|
'logging_interval': 'step',
|
|
# "log_momentum": True
|
|
},
|
|
},
|
|
'cuda_callback': {'target': 'main.CUDACallback'},
|
|
}
|
|
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
|
default_callbacks_cfg.update(
|
|
{'checkpoint_callback': modelckpt_cfg}
|
|
)
|
|
|
|
if 'callbacks' in lightning_config:
|
|
callbacks_cfg = lightning_config.callbacks
|
|
else:
|
|
callbacks_cfg = OmegaConf.create()
|
|
|
|
if 'metrics_over_trainsteps_checkpoint' in callbacks_cfg:
|
|
print(
|
|
'Caution: Saving checkpoints every n train steps without deleting. This might require some free space.'
|
|
)
|
|
default_metrics_over_trainsteps_ckpt_dict = {
|
|
'metrics_over_trainsteps_checkpoint': {
|
|
'target': 'pytorch_lightning.callbacks.ModelCheckpoint',
|
|
'params': {
|
|
'dirpath': os.path.join(
|
|
ckptdir, 'trainstep_checkpoints'
|
|
),
|
|
'filename': '{epoch:06}-{step:09}',
|
|
'verbose': True,
|
|
'save_top_k': -1,
|
|
'every_n_train_steps': 10000,
|
|
'save_weights_only': True,
|
|
},
|
|
}
|
|
}
|
|
default_callbacks_cfg.update(
|
|
default_metrics_over_trainsteps_ckpt_dict
|
|
)
|
|
|
|
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
|
|
if 'ignore_keys_callback' in callbacks_cfg and hasattr(
|
|
trainer_opt, 'resume_from_checkpoint'
|
|
):
|
|
callbacks_cfg.ignore_keys_callback.params[
|
|
'ckpt_path'
|
|
] = trainer_opt.resume_from_checkpoint
|
|
elif 'ignore_keys_callback' in callbacks_cfg:
|
|
del callbacks_cfg['ignore_keys_callback']
|
|
|
|
trainer_kwargs['callbacks'] = [
|
|
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
|
|
]
|
|
trainer_kwargs['max_steps'] = trainer_opt.max_steps
|
|
|
|
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
|
trainer_opt.accelerator = 'mps'
|
|
trainer_opt.detect_anomaly = False
|
|
|
|
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
|
|
trainer.logdir = logdir ###
|
|
|
|
# data
|
|
config.data.params.train.params.data_root = opt.data_root
|
|
config.data.params.validation.params.data_root = opt.data_root
|
|
data = instantiate_from_config(config.data)
|
|
|
|
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
|
|
# calling these ourselves should not be necessary but it is.
|
|
# lightning still takes care of proper multiprocessing though
|
|
data.prepare_data()
|
|
data.setup()
|
|
print('#### Data #####')
|
|
for k in data.datasets:
|
|
print(
|
|
f'{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}'
|
|
)
|
|
|
|
# configure learning rate
|
|
bs, base_lr = (
|
|
config.data.params.batch_size,
|
|
config.model.base_learning_rate,
|
|
)
|
|
if not cpu:
|
|
ngpu = len(lightning_config.trainer.gpus.strip(',').split(','))
|
|
else:
|
|
ngpu = 1
|
|
if 'accumulate_grad_batches' in lightning_config.trainer:
|
|
accumulate_grad_batches = (
|
|
lightning_config.trainer.accumulate_grad_batches
|
|
)
|
|
else:
|
|
accumulate_grad_batches = 1
|
|
print(f'accumulate_grad_batches = {accumulate_grad_batches}')
|
|
lightning_config.trainer.accumulate_grad_batches = (
|
|
accumulate_grad_batches
|
|
)
|
|
if opt.scale_lr:
|
|
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
|
|
print(
|
|
'Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)'.format(
|
|
model.learning_rate,
|
|
accumulate_grad_batches,
|
|
ngpu,
|
|
bs,
|
|
base_lr,
|
|
)
|
|
)
|
|
else:
|
|
model.learning_rate = base_lr
|
|
print('++++ NOT USING LR SCALING ++++')
|
|
print(f'Setting learning rate to {model.learning_rate:.2e}')
|
|
|
|
# allow checkpointing via USR1
|
|
def melk(*args, **kwargs):
|
|
# run all checkpoint hooks
|
|
if trainer.global_rank == 0:
|
|
print('Summoning checkpoint.')
|
|
ckpt_path = os.path.join(ckptdir, 'last.ckpt')
|
|
trainer.save_checkpoint(ckpt_path)
|
|
|
|
def divein(*args, **kwargs):
|
|
if trainer.global_rank == 0:
|
|
import pudb
|
|
|
|
pudb.set_trace()
|
|
|
|
import signal
|
|
|
|
signal.signal(signal.SIGTERM, melk)
|
|
signal.signal(signal.SIGTERM, divein)
|
|
|
|
# run
|
|
if opt.train:
|
|
try:
|
|
trainer.fit(model, data)
|
|
except Exception:
|
|
melk()
|
|
raise
|
|
if not opt.no_test and not trainer.interrupted:
|
|
trainer.test(model, data)
|
|
except Exception:
|
|
if opt.debug and trainer.global_rank == 0:
|
|
try:
|
|
import pudb as debugger
|
|
except ImportError:
|
|
import pdb as debugger
|
|
debugger.post_mortem()
|
|
raise
|
|
finally:
|
|
# move newly created debug project to debug_runs
|
|
if opt.debug and not opt.resume and trainer.global_rank == 0:
|
|
dst, name = os.path.split(logdir)
|
|
dst = os.path.join(dst, 'debug_runs', name)
|
|
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
|
os.rename(logdir, dst)
|
|
# if trainer.global_rank == 0:
|
|
# print(trainer.profiler.summary())
|