mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
381 lines
12 KiB
Python
381 lines
12 KiB
Python
import importlib
|
|
import math
|
|
import multiprocessing as mp
|
|
import os
|
|
import re
|
|
import io
|
|
import base64
|
|
|
|
from collections import abc
|
|
from inspect import isfunction
|
|
from pathlib import Path
|
|
from queue import Queue
|
|
from threading import Thread
|
|
|
|
import numpy as np
|
|
import requests
|
|
import torch
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
from tqdm import tqdm
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
from .devices import torch_dtype
|
|
|
|
|
|
def log_txt_as_img(wh, xc, size=10):
|
|
# wh a tuple of (width, height)
|
|
# xc a list of captions to plot
|
|
b = len(xc)
|
|
txts = list()
|
|
for bi in range(b):
|
|
txt = Image.new("RGB", wh, color="white")
|
|
draw = ImageDraw.Draw(txt)
|
|
font = ImageFont.load_default()
|
|
nc = int(40 * (wh[0] / 256))
|
|
lines = "\n".join(xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc))
|
|
|
|
try:
|
|
draw.text((0, 0), lines, fill="black", font=font)
|
|
except UnicodeEncodeError:
|
|
logger.warning("Cant encode string for logging. Skipping.")
|
|
|
|
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
|
txts.append(txt)
|
|
txts = np.stack(txts)
|
|
txts = torch.tensor(txts)
|
|
return txts
|
|
|
|
|
|
def ismap(x):
|
|
if not isinstance(x, torch.Tensor):
|
|
return False
|
|
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
|
|
|
|
|
def isimage(x):
|
|
if not isinstance(x, torch.Tensor):
|
|
return False
|
|
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
|
|
|
|
|
def exists(x):
|
|
return x is not None
|
|
|
|
|
|
def default(val, d):
|
|
if exists(val):
|
|
return val
|
|
return d() if isfunction(d) else d
|
|
|
|
|
|
def mean_flat(tensor):
|
|
"""
|
|
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
|
Take the mean over all non-batch dimensions.
|
|
"""
|
|
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
|
|
|
|
|
def count_params(model, verbose=False):
|
|
total_params = sum(p.numel() for p in model.parameters())
|
|
if verbose:
|
|
logger.debug(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
|
|
return total_params
|
|
|
|
|
|
def instantiate_from_config(config, **kwargs):
|
|
if "target" not in config:
|
|
if config == "__is_first_stage__":
|
|
return None
|
|
elif config == "__is_unconditional__":
|
|
return None
|
|
raise KeyError("Expected key `target` to instantiate.")
|
|
return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs)
|
|
|
|
|
|
def get_obj_from_str(string, reload=False):
|
|
module, cls = string.rsplit(".", 1)
|
|
if reload:
|
|
module_imp = importlib.import_module(module)
|
|
importlib.reload(module_imp)
|
|
return getattr(importlib.import_module(module, package=None), cls)
|
|
|
|
|
|
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
|
|
# create dummy dataset instance
|
|
|
|
# run prefetching
|
|
if idx_to_fn:
|
|
res = func(data, worker_id=idx)
|
|
else:
|
|
res = func(data)
|
|
Q.put([idx, res])
|
|
Q.put("Done")
|
|
|
|
|
|
def parallel_data_prefetch(
|
|
func: callable,
|
|
data,
|
|
n_proc,
|
|
target_data_type="ndarray",
|
|
cpu_intensive=True,
|
|
use_worker_id=False,
|
|
):
|
|
# if target_data_type not in ["ndarray", "list"]:
|
|
# raise ValueError(
|
|
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
|
|
# )
|
|
if isinstance(data, np.ndarray) and target_data_type == "list":
|
|
raise ValueError("list expected but function got ndarray.")
|
|
elif isinstance(data, abc.Iterable):
|
|
if isinstance(data, dict):
|
|
logger.warning(
|
|
'"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
|
)
|
|
data = list(data.values())
|
|
if target_data_type == "ndarray":
|
|
data = np.asarray(data)
|
|
else:
|
|
data = list(data)
|
|
else:
|
|
raise TypeError(
|
|
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
|
|
)
|
|
|
|
if cpu_intensive:
|
|
Q = mp.Queue(1000)
|
|
proc = mp.Process
|
|
else:
|
|
Q = Queue(1000)
|
|
proc = Thread
|
|
# spawn processes
|
|
if target_data_type == "ndarray":
|
|
arguments = [[func, Q, part, i, use_worker_id] for i, part in enumerate(np.array_split(data, n_proc))]
|
|
else:
|
|
step = int(len(data) / n_proc + 1) if len(data) % n_proc != 0 else int(len(data) / n_proc)
|
|
arguments = [
|
|
[func, Q, part, i, use_worker_id]
|
|
for i, part in enumerate([data[i : i + step] for i in range(0, len(data), step)])
|
|
]
|
|
processes = []
|
|
for i in range(n_proc):
|
|
p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
|
|
processes += [p]
|
|
|
|
# start processes
|
|
logger.info("Start prefetching...")
|
|
import time
|
|
|
|
start = time.time()
|
|
gather_res = [[] for _ in range(n_proc)]
|
|
try:
|
|
for p in processes:
|
|
p.start()
|
|
|
|
k = 0
|
|
while k < n_proc:
|
|
# get result
|
|
res = Q.get()
|
|
if res == "Done":
|
|
k += 1
|
|
else:
|
|
gather_res[res[0]] = res[1]
|
|
|
|
except Exception as e:
|
|
logger.error("Exception: ", e)
|
|
for p in processes:
|
|
p.terminate()
|
|
|
|
raise e
|
|
finally:
|
|
for p in processes:
|
|
p.join()
|
|
logger.info(f"Prefetching complete. [{time.time() - start} sec.]")
|
|
|
|
if target_data_type == "ndarray":
|
|
if not isinstance(gather_res[0], np.ndarray):
|
|
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
|
|
|
|
# order outputs
|
|
return np.concatenate(gather_res, axis=0)
|
|
elif target_data_type == "list":
|
|
out = []
|
|
for r in gather_res:
|
|
out.extend(r)
|
|
return out
|
|
else:
|
|
return gather_res
|
|
|
|
|
|
def rand_perlin_2d(shape, res, device, fade=lambda t: 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3):
|
|
delta = (res[0] / shape[0], res[1] / shape[1])
|
|
d = (shape[0] // res[0], shape[1] // res[1])
|
|
|
|
grid = (
|
|
torch.stack(
|
|
torch.meshgrid(
|
|
torch.arange(0, res[0], delta[0]),
|
|
torch.arange(0, res[1], delta[1]),
|
|
indexing="ij",
|
|
),
|
|
dim=-1,
|
|
).to(device)
|
|
% 1
|
|
)
|
|
|
|
rand_val = torch.rand(res[0] + 1, res[1] + 1)
|
|
|
|
angles = 2 * math.pi * rand_val
|
|
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1).to(device)
|
|
|
|
tile_grads = (
|
|
lambda slice1, slice2: gradients[slice1[0] : slice1[1], slice2[0] : slice2[1]]
|
|
.repeat_interleave(d[0], 0)
|
|
.repeat_interleave(d[1], 1)
|
|
)
|
|
|
|
def dot(grad, shift):
|
|
return (
|
|
torch.stack(
|
|
(
|
|
grid[: shape[0], : shape[1], 0] + shift[0],
|
|
grid[: shape[0], : shape[1], 1] + shift[1],
|
|
),
|
|
dim=-1,
|
|
)
|
|
* grad[: shape[0], : shape[1]]
|
|
).sum(dim=-1)
|
|
|
|
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]).to(device)
|
|
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]).to(device)
|
|
n01 = dot(tile_grads([0, -1], [1, None]), [0, -1]).to(device)
|
|
n11 = dot(tile_grads([1, None], [1, None]), [-1, -1]).to(device)
|
|
t = fade(grid[: shape[0], : shape[1]])
|
|
noise = math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]).to(
|
|
device
|
|
)
|
|
return noise.to(dtype=torch_dtype(device))
|
|
|
|
|
|
def ask_user(question: str, answers: list):
|
|
from itertools import chain, repeat
|
|
|
|
user_prompt = f"\n>> {question} {answers}: "
|
|
invalid_answer_msg = "Invalid answer. Please try again."
|
|
pose_question = chain([user_prompt], repeat("\n".join([invalid_answer_msg, user_prompt])))
|
|
user_answers = map(input, pose_question)
|
|
valid_response = next(filter(answers.__contains__, user_answers))
|
|
return valid_response
|
|
|
|
|
|
# -------------------------------------
|
|
def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path:
|
|
"""
|
|
Download a model file.
|
|
:param url: https, http or ftp URL
|
|
:param dest: A Path object. If path exists and is a directory, then we try to derive the filename
|
|
from the URL's Content-Disposition header and copy the URL contents into
|
|
dest/filename
|
|
:param access_token: Access token to access this resource
|
|
"""
|
|
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
|
|
open_mode = "wb"
|
|
exist_size = 0
|
|
|
|
resp = requests.get(url, header, stream=True)
|
|
content_length = int(resp.headers.get("content-length", 0))
|
|
|
|
if dest.is_dir():
|
|
try:
|
|
file_name = re.search('filename="(.+)"', resp.headers.get("Content-Disposition")).group(1)
|
|
except AttributeError:
|
|
file_name = os.path.basename(url)
|
|
dest = dest / file_name
|
|
else:
|
|
dest.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
if dest.exists():
|
|
exist_size = dest.stat().st_size
|
|
header["Range"] = f"bytes={exist_size}-"
|
|
open_mode = "ab"
|
|
resp = requests.get(url, headers=header, stream=True) # new request with range
|
|
|
|
if exist_size > content_length:
|
|
logger.warning("corrupt existing file found. re-downloading")
|
|
os.remove(dest)
|
|
exist_size = 0
|
|
|
|
if resp.status_code == 416 or (content_length > 0 and exist_size == content_length):
|
|
logger.warning(f"{dest}: complete file found. Skipping.")
|
|
return dest
|
|
elif resp.status_code == 206 or exist_size > 0:
|
|
logger.warning(f"{dest}: partial file found. Resuming...")
|
|
elif resp.status_code != 200:
|
|
logger.error(f"An error occurred during downloading {dest}: {resp.reason}")
|
|
else:
|
|
logger.info(f"{dest}: Downloading...")
|
|
|
|
try:
|
|
if content_length < 2000:
|
|
logger.error(f"ERROR DOWNLOADING {url}: {resp.text}")
|
|
return None
|
|
|
|
with open(dest, open_mode) as file, tqdm(
|
|
desc=str(dest),
|
|
initial=exist_size,
|
|
total=content_length,
|
|
unit="iB",
|
|
unit_scale=True,
|
|
unit_divisor=1000,
|
|
) as bar:
|
|
for data in resp.iter_content(chunk_size=1024):
|
|
size = file.write(data)
|
|
bar.update(size)
|
|
except Exception as e:
|
|
logger.error(f"An error occurred while downloading {dest}: {str(e)}")
|
|
return None
|
|
|
|
return dest
|
|
|
|
|
|
def url_attachment_name(url: str) -> dict:
|
|
try:
|
|
resp = requests.get(url, stream=True)
|
|
match = re.search('filename="(.+)"', resp.headers.get("Content-Disposition"))
|
|
return match.group(1)
|
|
except Exception:
|
|
return None
|
|
|
|
|
|
def download_with_progress_bar(url: str, dest: Path) -> bool:
|
|
result = download_with_resume(url, dest, access_token=None)
|
|
return result is not None
|
|
|
|
|
|
def image_to_dataURL(image: Image.Image, image_format: str = "PNG") -> str:
|
|
"""
|
|
Converts an image into a base64 image dataURL.
|
|
"""
|
|
buffered = io.BytesIO()
|
|
image.save(buffered, format=image_format)
|
|
mime_type = Image.MIME.get(image_format.upper(), "image/" + image_format.lower())
|
|
image_base64 = f"data:{mime_type};base64," + base64.b64encode(buffered.getvalue()).decode("UTF-8")
|
|
return image_base64
|
|
|
|
|
|
class Chdir(object):
|
|
"""Context manager to chdir to desired directory and change back after context exits:
|
|
Args:
|
|
path (Path): The path to the cwd
|
|
"""
|
|
|
|
def __init__(self, path: Path):
|
|
self.path = path
|
|
self.original = Path().absolute()
|
|
|
|
def __enter__(self):
|
|
os.chdir(self.path)
|
|
|
|
def __exit__(self, *args):
|
|
os.chdir(self.original)
|