InvokeAI/ldm/invoke/generator/diffusers_pipeline.py

359 lines
17 KiB
Python

import secrets
import warnings
from dataclasses import dataclass
from typing import List, Optional, Union, Callable
import torch
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from ldm.modules.encoders.modules import WeightedFrozenCLIPEmbedder
@dataclass
class PipelineIntermediateState:
run_id: str
step: int
timestep: int
latents: torch.Tensor
predicted_original: Optional[torch.Tensor] = None
class StableDiffusionGeneratorPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline.
Hopefully future versions of diffusers provide access to more of these functions so that we don't
need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
ID_LENGTH = 8
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
# InvokeAI's interface for text embeddings and whatnot
self.clip_embedder = WeightedFrozenCLIPEmbedder(
tokenizer=self.tokenizer,
transformer=self.text_encoder
)
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def enable_xformers_memory_efficient_attention(self):
r"""
Enable memory efficient attention as implemented in xformers.
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
time. Speed up at training time is not guaranteed.
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
is used.
"""
self.unet.set_use_memory_efficient_attention_xformers(True)
def disable_xformers_memory_efficient_attention(self):
r"""
Disable memory efficient attention as implemented in xformers.
"""
self.unet.set_use_memory_efficient_attention_xformers(False)
def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor,
guidance_scale: float,
*, callback: Callable[[PipelineIntermediateState], None]=None,
extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo=None,
run_id=None,
**extra_step_kwargs) -> StableDiffusionPipelineOutput:
r"""
Function invoked when calling the pipeline for generation.
:param latents: Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for
image generation. Can be used to tweak the same generation with different prompts.
:param num_inference_steps: The number of denoising steps. More denoising steps usually lead to a higher quality
image at the expense of slower inference.
:param text_embeddings:
:param guidance_scale: Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
:param callback:
:param extra_conditioning_info:
:param run_id:
:param extra_step_kwargs:
"""
self.scheduler.set_timesteps(num_inference_steps, device=self.unet.device)
result = None
for result in self.generate_from_embeddings(
latents, text_embeddings, unconditioned_embeddings, guidance_scale,
extra_conditioning_info=extra_conditioning_info,
run_id=run_id, **extra_step_kwargs):
if callback is not None and isinstance(result, PipelineIntermediateState):
callback(result)
if result is None:
raise AssertionError("why was that an empty generator?")
return result
def generate(
self,
prompt: Union[str, List[str]],
*,
opposing_prompt: Union[str, List[str]] = None,
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
run_id: str = None,
**extra_step_kwargs,
):
if isinstance(prompt, str):
batch_size = 1
else:
batch_size = len(prompt)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
text_embeddings, unconditioned_embeddings = self.get_text_embeddings(prompt, opposing_prompt, do_classifier_free_guidance, batch_size)\
.to(self.unet.device)
self.scheduler.set_timesteps(num_inference_steps)
latents = self.prepare_latents(latents, batch_size, height, width, generator, self.unet.dtype)
yield from self.generate_from_embeddings(latents, text_embeddings, unconditioned_embeddings,
guidance_scale, run_id=run_id, **extra_step_kwargs)
def generate_from_embeddings(
self,
latents: torch.Tensor,
text_embeddings: torch.Tensor,
unconditioned_embeddings: torch.Tensor,
guidance_scale: float,
*,
run_id: str = None,
extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None,
**extra_step_kwargs):
if run_id is None:
run_id = secrets.token_urlsafe(self.ID_LENGTH)
# scale the initial noise by the standard deviation required by the scheduler
latents *= self.scheduler.init_noise_sigma
yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.num_train_timesteps,
latents=latents)
batch_size = latents.shape[0]
batched_t = torch.full((batch_size,), self.scheduler.timesteps[0],
dtype=self.scheduler.timesteps.dtype, device=self.unet.device)
# NOTE: Depends on scheduler being already initialized!
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
batched_t.fill_(t)
step_output = self.step(batched_t, latents, guidance_scale,
text_embeddings, unconditioned_embeddings,
i, **extra_step_kwargs)
latents = step_output.prev_sample
predicted_original = getattr(step_output, 'pred_original_sample', None)
yield PipelineIntermediateState(run_id=run_id, step=i, timestep=int(t), latents=latents,
predicted_original=predicted_original)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
image = self.decode_to_image(latents)
output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[])
yield self.check_for_safety(output)
@torch.inference_mode()
def step(self, t: torch.Tensor, latents: torch.Tensor, guidance_scale: float,
text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor,
step_index:int | None = None,
**extra_step_kwargs):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
# TODO: should this scaling happen here or inside self._unet_forward?
# i.e. before or after passing it to InvokeAIDiffuserComponent
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# predict the noise residual
noise_pred = self.invokeai_diffuser.do_diffusion_step(
latent_model_input, t,
unconditioned_embeddings, text_embeddings,
guidance_scale,
step_index=step_index)
# compute the previous noisy sample x_t -> x_t-1
return self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
def _unet_forward(self, latents, t, text_embeddings):
# predict the noise residual
return self.unet(latents, t, encoder_hidden_states=text_embeddings).sample
@torch.inference_mode()
def check_for_safety(self, output):
if not getattr(self, 'feature_extractor') or not getattr(self, 'safety_checker'):
return output
images = output.images
safety_checker_output = self.feature_extractor(self.numpy_to_pil(images),
return_tensors="pt").to(self.device)
screened_images, has_nsfw_concept = self.safety_checker(
images=images, clip_input=safety_checker_output.pixel_values)
return StableDiffusionPipelineOutput(screened_images, has_nsfw_concept)
@torch.inference_mode()
def decode_to_image(self, latents):
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
return image
@torch.inference_mode()
def get_text_embeddings(self,
prompt: Union[str, List[str]],
opposing_prompt: Union[str, List[str]],
do_classifier_free_guidance: bool,
batch_size: int):
# get prompt text embeddings
text_input = self._tokenize(prompt)
text_embeddings = self.text_encoder(text_input.input_ids)[0]
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
# opposing prompt defaults to blank caption for everything in the batch
text_anti_input = self._tokenize(opposing_prompt or [""] * batch_size)
uncond_embeddings = self.text_encoder(text_anti_input.input_ids)[0]
else:
uncond_embeddings = None
return text_embeddings, uncond_embeddings
@torch.inference_mode()
def get_learned_conditioning(self, c: List[List[str]], *, return_tokens=True, fragment_weights=None):
"""
Compatibility function for ldm.models.diffusion.ddpm.LatentDiffusion.
"""
return self.clip_embedder.encode(c, return_tokens=return_tokens, fragment_weights=fragment_weights)
@property
def cond_stage_model(self):
warnings.warn("legacy compatibility layer", DeprecationWarning)
return self.clip_embedder
@torch.inference_mode()
def _tokenize(self, prompt: Union[str, List[str]]):
return self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
@property
def channels(self) -> int:
"""Compatible with DiffusionWrapper"""
return self.unet.in_channels
def prepare_latents(self, latents, batch_size, height, width, generator, dtype):
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
if latents is None:
latents = torch.randn(
latents_shape,
generator=generator,
device=self.unet.device,
dtype=dtype
)
else:
if latents.shape != latents_shape:
raise ValueError(
f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
if latents.device != self.unet.device:
raise ValueError(f"Unexpected latents device, got {latents.device}, "
f"expected {self.unet.device}")
# scale the initial noise by the standard deviation required by the scheduler
latents *= self.scheduler.init_noise_sigma
return latents