InvokeAI/ldm/models/diffusion/ksampler.py

116 lines
3.8 KiB
Python

"""wrapper around part of Katherine Crowson's k-diffusion library, making it call compatible with other Samplers"""
import k_diffusion as K
import torch
import torch.nn as nn
from ldm.dream.devices import choose_torch_device
from ldm.modules.diffusionmodules.util import rand_perlin_2d
def cfg_apply_threshold(result, threshold = 0.0, scale = 0.707):
if threshold <= 0.0:
return result
maxval = 0.0 + torch.max(result).cpu().numpy()
minval = 0.0 + torch.min(result).cpu().numpy()
if maxval < threshold and minval > -threshold:
return result
if maxval > threshold:
maxval = min(max(1, scale*maxval), threshold)
if minval < -threshold:
minval = max(min(-1, scale*minval), -threshold)
return torch.clamp(result, min=minval, max=maxval)
class CFGDenoiser(nn.Module):
def __init__(self, model, threshold = 0):
super().__init__()
self.inner_model = model
self.threshold = threshold
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return cfg_apply_threshold(uncond + (cond - uncond) * cond_scale, self.threshold)
class KSampler(object):
def __init__(self, model, schedule='lms', device=None, **kwargs):
super().__init__()
self.model = K.external.CompVisDenoiser(model)
self.schedule = schedule
self.device = device or choose_torch_device()
#self.threshold = threshold or 0
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(
x_in, sigma_in, cond=cond_in
).chunk(2)
return uncond + (cond - uncond) * cond_scale
#return cfg_apply_threshold(uncond + (cond - uncond) * cond_scale, self.threshold)
# most of these arguments are ignored and are only present for compatibility with
# other samples
@torch.no_grad()
def sample(
self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.0,
mask=None,
x0=None,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
threshold = 0,
perlin = 0,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs,
):
def route_callback(k_callback_values):
if img_callback is not None:
img_callback(k_callback_values['x'], k_callback_values['i'])
sigmas = self.model.get_sigmas(S)
if x_T:
x = x_T
else:
x = (
torch.randn([batch_size, *shape], device=self.device)
* sigmas[0]
) # for GPU draw
if perlin > 0.0:
print(shape)
x = (1 - perlin / 2) * x + perlin * rand_perlin_2d((shape[1], shape[2]), (8, 8)).to(self.device)
model_wrap_cfg = CFGDenoiser(self.model, threshold=threshold)
extra_args = {
'cond': conditioning,
'uncond': unconditional_conditioning,
'cond_scale': unconditional_guidance_scale,
}
return (
K.sampling.__dict__[f'sample_{self.schedule}'](
model_wrap_cfg, x, sigmas, extra_args=extra_args,
callback=route_callback
),
None,
)