InvokeAI/ldm/invoke/generator/diffusers_pipeline.py

666 lines
32 KiB
Python

from __future__ import annotations
import dataclasses
import inspect
import secrets
import sys
from dataclasses import dataclass, field
from typing import List, Optional, Union, Callable, Type, TypeVar, Generic, Any
if sys.version_info < (3, 10):
from typing_extensions import ParamSpec
else:
from typing import ParamSpec
import PIL.Image
import einops
import torch
import torchvision.transforms as T
from diffusers.utils.import_utils import is_xformers_available
from ...models.diffusion.cross_attention_map_saving import AttentionMapSaver
from ...modules.prompt_to_embeddings_converter import WeightedPromptFragmentsToEmbeddingsConverter
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils.outputs import BaseOutput
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from ldm.invoke.globals import Globals
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent, ThresholdSettings
from ldm.modules.textual_inversion_manager import TextualInversionManager
@dataclass
class PipelineIntermediateState:
run_id: str
step: int
timestep: int
latents: torch.Tensor
predicted_original: Optional[torch.Tensor] = None
attention_map_saver: Optional[AttentionMapSaver] = None
# copied from configs/stable-diffusion/v1-inference.yaml
_default_personalization_config_params = dict(
placeholder_strings=["*"],
initializer_wods=["sculpture"],
per_image_tokens=False,
num_vectors_per_token=1,
progressive_words=False
)
@dataclass
class AddsMaskLatents:
"""Add the channels required for inpainting model input.
The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask
and the latent encoding of the base image.
This class assumes the same mask and base image should apply to all items in the batch.
"""
forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
mask: torch.Tensor
initial_image_latents: torch.Tensor
def __call__(self, latents: torch.Tensor, t: torch.Tensor, text_embeddings: torch.Tensor) -> torch.Tensor:
model_input = self.add_mask_channels(latents)
return self.forward(model_input, t, text_embeddings)
def add_mask_channels(self, latents):
batch_size = latents.size(0)
# duplicate mask and latents for each batch
mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size)
image_latents = einops.repeat(self.initial_image_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size)
# add mask and image as additional channels
model_input, _ = einops.pack([latents, mask, image_latents], 'b * h w')
return model_input
def are_like_tensors(a: torch.Tensor, b: object) -> bool:
return (
isinstance(b, torch.Tensor)
and (a.size() == b.size())
)
@dataclass
class AddsMaskGuidance:
mask: torch.FloatTensor
mask_latents: torch.FloatTensor
scheduler: SchedulerMixin
noise: torch.Tensor
_debug: Optional[Callable] = None
def __call__(self, step_output: BaseOutput | SchedulerOutput, t: torch.Tensor, conditioning) -> BaseOutput:
output_class = step_output.__class__ # We'll create a new one with masked data.
# The problem with taking SchedulerOutput instead of the model output is that we're less certain what's in it.
# It's reasonable to assume the first thing is prev_sample, but then does it have other things
# like pred_original_sample? Should we apply the mask to them too?
# But what if there's just some other random field?
prev_sample = step_output[0]
# Mask anything that has the same shape as prev_sample, return others as-is.
return output_class(
{k: (self.apply_mask(v, self._t_for_field(k, t))
if are_like_tensors(prev_sample, v) else v)
for k, v in step_output.items()}
)
def _t_for_field(self, field_name:str, t):
if field_name == "pred_original_sample":
return torch.zeros_like(t, dtype=t.dtype) # it represents t=0
return t
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
batch_size = latents.size(0)
mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size)
if t.dim() == 0:
# some schedulers expect t to be one-dimensional.
# TODO: file diffusers bug about inconsistency?
t = einops.repeat(t, '-> batch', batch=batch_size)
# Noise shouldn't be re-randomized between steps here. The multistep schedulers
# get very confused about what is happening from step to step when we do that.
mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t)
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
mask_latents = einops.repeat(mask_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size)
masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype))
if self._debug:
self._debug(masked_input, f"t={t} lerped")
return masked_input
def trim_to_multiple_of(*args, multiple_of=8):
return tuple((x - x % multiple_of) for x in args)
def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool=True, multiple_of=8) -> torch.FloatTensor:
"""
:param image: input image
:param normalize: scale the range to [-1, 1] instead of [0, 1]
:param multiple_of: resize the input so both dimensions are a multiple of this
"""
w, h = trim_to_multiple_of(*image.size)
transformation = T.Compose([
T.Resize((h, w), T.InterpolationMode.LANCZOS),
T.ToTensor(),
])
tensor = transformation(image)
if normalize:
tensor = tensor * 2.0 - 1.0
return tensor
def is_inpainting_model(unet: UNet2DConditionModel):
return unet.conv_in.in_channels == 9
CallbackType = TypeVar('CallbackType')
ReturnType = TypeVar('ReturnType')
ParamType = ParamSpec('ParamType')
@dataclass(frozen=True)
class GeneratorToCallbackinator(Generic[ParamType, ReturnType, CallbackType]):
"""Convert a generator to a function with a callback and a return value."""
generator_method: Callable[ParamType, ReturnType]
callback_arg_type: Type[CallbackType]
def __call__(self, *args: ParamType.args,
callback:Callable[[CallbackType], Any]=None,
**kwargs: ParamType.kwargs) -> ReturnType:
result = None
for result in self.generator_method(*args, **kwargs):
if callback is not None and isinstance(result, self.callback_arg_type):
callback(result)
if result is None:
raise AssertionError("why was that an empty generator?")
return result
@dataclass(frozen=True)
class ConditioningData:
unconditioned_embeddings: torch.Tensor
text_embeddings: torch.Tensor
guidance_scale: float
"""
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
"""
extra: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo] = None
scheduler_args: dict[str, Any] = field(default_factory=dict)
"""Additional arguments to pass to scheduler.step."""
threshold: Optional[ThresholdSettings] = None
@property
def dtype(self):
return self.text_embeddings.dtype
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
scheduler_args = dict(self.scheduler_args)
step_method = inspect.signature(scheduler.step)
for name, value in kwargs.items():
try:
step_method.bind_partial(**{name: value})
except TypeError:
# FIXME: don't silently discard arguments
pass # debug("%s does not accept argument named %r", scheduler, name)
else:
scheduler_args[name] = value
return dataclasses.replace(self, scheduler_args=scheduler_args)
@dataclass
class InvokeAIStableDiffusionPipelineOutput(StableDiffusionPipelineOutput):
r"""
Output class for InvokeAI's Stable Diffusion pipeline.
Args:
attention_map_saver (`AttentionMapSaver`): Object containing attention maps that can be displayed to the user
after generation completes. Optional.
"""
attention_map_saver: Optional[AttentionMapSaver]
class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline.
Hopefully future versions of diffusers provide access to more of these functions so that we don't
need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
ID_LENGTH = 8
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: Optional[StableDiffusionSafetyChecker],
feature_extractor: Optional[CLIPFeatureExtractor],
requires_safety_checker: bool = False,
precision: str = 'float32',
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
safety_checker, feature_extractor, requires_safety_checker)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward, is_running_diffusers=True)
use_full_precision = (precision == 'float32' or precision == 'autocast')
self.textual_inversion_manager = TextualInversionManager(tokenizer=self.tokenizer,
text_encoder=self.text_encoder,
full_precision=use_full_precision)
# InvokeAI's interface for text embeddings and whatnot
self.prompt_fragments_to_embeddings_converter = WeightedPromptFragmentsToEmbeddingsConverter(
tokenizer=self.tokenizer,
text_encoder=self.text_encoder,
textual_inversion_manager=self.textual_inversion_manager
)
self._enable_memory_efficient_attention()
def _enable_memory_efficient_attention(self):
"""
if xformers is available, use it, otherwise use sliced attention.
"""
if is_xformers_available() and not Globals.disable_xformers:
self.enable_xformers_memory_efficient_attention()
else:
if torch.backends.mps.is_available():
# until pytorch #91617 is fixed, slicing is borked on MPS
# https://github.com/pytorch/pytorch/issues/91617
# fix is in https://github.com/kulinseth/pytorch/pull/222 but no idea when it will get merged to pytorch mainline.
pass
else:
self.enable_attention_slicing(slice_size='max')
def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
conditioning_data: ConditioningData,
*,
noise: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None]=None,
run_id=None) -> InvokeAIStableDiffusionPipelineOutput:
r"""
Function invoked when calling the pipeline for generation.
:param conditioning_data:
:param latents: Pre-generated un-noised latents, to be used as inputs for
image generation. Can be used to tweak the same generation with different prompts.
:param num_inference_steps: The number of denoising steps. More denoising steps usually lead to a higher quality
image at the expense of slower inference.
:param noise: Noise to add to the latents, sampled from a Gaussian distribution.
:param callback:
:param run_id:
"""
result_latents, result_attention_map_saver = self.latents_from_embeddings(
latents, num_inference_steps,
conditioning_data,
noise=noise,
run_id=run_id,
callback=callback)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
with torch.inference_mode():
image = self.decode_latents(result_latents)
output = InvokeAIStableDiffusionPipelineOutput(images=image, nsfw_content_detected=[], attention_map_saver=result_attention_map_saver)
return self.check_for_safety(output, dtype=conditioning_data.dtype)
def latents_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
conditioning_data: ConditioningData,
*,
noise: torch.Tensor,
timesteps=None,
additional_guidance: List[Callable] = None, run_id=None,
callback: Callable[[PipelineIntermediateState], None] = None
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
if timesteps is None:
self.scheduler.set_timesteps(num_inference_steps, device=self.unet.device)
timesteps = self.scheduler.timesteps
infer_latents_from_embeddings = GeneratorToCallbackinator(self.generate_latents_from_embeddings, PipelineIntermediateState)
result: PipelineIntermediateState = infer_latents_from_embeddings(
latents, timesteps, conditioning_data,
noise=noise,
additional_guidance=additional_guidance,
run_id=run_id,
callback=callback)
return result.latents, result.attention_map_saver
def generate_latents_from_embeddings(self, latents: torch.Tensor, timesteps,
conditioning_data: ConditioningData,
*,
noise: torch.Tensor,
run_id: str = None,
additional_guidance: List[Callable] = None):
if run_id is None:
run_id = secrets.token_urlsafe(self.ID_LENGTH)
if additional_guidance is None:
additional_guidance = []
extra_conditioning_info = conditioning_data.extra
with self.invokeai_diffuser.custom_attention_context(extra_conditioning_info=extra_conditioning_info,
step_count=len(self.scheduler.timesteps)
):
yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.num_train_timesteps,
latents=latents)
batch_size = latents.shape[0]
batched_t = torch.full((batch_size,), timesteps[0],
dtype=timesteps.dtype, device=self.unet.device)
latents = self.scheduler.add_noise(latents, noise, batched_t)
attention_map_saver: Optional[AttentionMapSaver] = None
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t.fill_(t)
step_output = self.step(batched_t, latents, conditioning_data,
step_index=i,
total_step_count=len(timesteps),
additional_guidance=additional_guidance)
latents = step_output.prev_sample
predicted_original = getattr(step_output, 'pred_original_sample', None)
# TODO resuscitate attention map saving
#if i == len(timesteps)-1 and extra_conditioning_info is not None:
# eos_token_index = extra_conditioning_info.tokens_count_including_eos_bos - 1
# attention_map_token_ids = range(1, eos_token_index)
# attention_map_saver = AttentionMapSaver(token_ids=attention_map_token_ids, latents_shape=latents.shape[-2:])
# self.invokeai_diffuser.setup_attention_map_saving(attention_map_saver)
yield PipelineIntermediateState(run_id=run_id, step=i, timestep=int(t), latents=latents,
predicted_original=predicted_original, attention_map_saver=attention_map_saver)
return latents, attention_map_saver
@torch.inference_mode()
def step(self, t: torch.Tensor, latents: torch.Tensor,
conditioning_data: ConditioningData,
step_index:int, total_step_count:int,
additional_guidance: List[Callable] = None):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
if additional_guidance is None:
additional_guidance = []
# TODO: should this scaling happen here or inside self._unet_forward?
# i.e. before or after passing it to InvokeAIDiffuserComponent
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# predict the noise residual
noise_pred = self.invokeai_diffuser.do_diffusion_step(
latent_model_input, t,
conditioning_data.unconditioned_embeddings, conditioning_data.text_embeddings,
conditioning_data.guidance_scale,
step_index=step_index,
total_step_count=total_step_count,
threshold=conditioning_data.threshold
)
# compute the previous noisy sample x_t -> x_t-1
step_output = self.scheduler.step(noise_pred, timestep, latents,
**conditioning_data.scheduler_args)
# TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent.
# But the way things are now, scheduler runs _after_ that, so there was
# no way to use it to apply an operation that happens after the last scheduler.step.
for guidance in additional_guidance:
step_output = guidance(step_output, timestep, conditioning_data)
return step_output
def _unet_forward(self, latents, t, text_embeddings, cross_attention_kwargs: Optional[dict[str,Any]] = None):
"""predict the noise residual"""
if is_inpainting_model(self.unet) and latents.size(1) == 4:
# Pad out normal non-inpainting inputs for an inpainting model.
# FIXME: There are too many layers of functions and we have too many different ways of
# overriding things! This should get handled in a way more consistent with the other
# use of AddsMaskLatents.
latents = AddsMaskLatents(
self._unet_forward,
mask=torch.ones_like(latents[:1, :1], device=latents.device, dtype=latents.dtype),
initial_image_latents=torch.zeros_like(latents[:1], device=latents.device, dtype=latents.dtype)
).add_mask_channels(latents)
return self.unet(sample=latents,
timestep=t,
encoder_hidden_states=text_embeddings,
cross_attention_kwargs=cross_attention_kwargs).sample
def img2img_from_embeddings(self,
init_image: Union[torch.FloatTensor, PIL.Image.Image],
strength: float,
num_inference_steps: int,
conditioning_data: ConditioningData,
*, callback: Callable[[PipelineIntermediateState], None] = None,
run_id=None,
noise_func=None
) -> InvokeAIStableDiffusionPipelineOutput:
if isinstance(init_image, PIL.Image.Image):
init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB'))
if init_image.dim() == 3:
init_image = einops.rearrange(init_image, 'c h w -> 1 c h w')
# 6. Prepare latent variables
device = self.unet.device
latents_dtype = self.unet.dtype
initial_latents = self.non_noised_latents_from_image(init_image, device=device, dtype=latents_dtype)
noise = noise_func(initial_latents)
return self.img2img_from_latents_and_embeddings(initial_latents, num_inference_steps,
conditioning_data,
strength,
noise, run_id, callback)
def img2img_from_latents_and_embeddings(self, initial_latents, num_inference_steps,
conditioning_data: ConditioningData,
strength,
noise: torch.Tensor, run_id=None, callback=None
) -> InvokeAIStableDiffusionPipelineOutput:
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength, self.unet.device)
result_latents, result_attention_maps = self.latents_from_embeddings(
initial_latents, num_inference_steps, conditioning_data,
timesteps=timesteps,
noise=noise,
run_id=run_id,
callback=callback)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
with torch.inference_mode():
image = self.decode_latents(result_latents)
output = InvokeAIStableDiffusionPipelineOutput(images=image, nsfw_content_detected=[], attention_map_saver=result_attention_maps)
return self.check_for_safety(output, dtype=conditioning_data.dtype)
def get_img2img_timesteps(self, num_inference_steps: int, strength: float, device) -> (torch.Tensor, int):
img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components)
assert img2img_pipeline.scheduler is self.scheduler
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, adjusted_steps = img2img_pipeline.get_timesteps(num_inference_steps, strength, device=device)
# Workaround for low strength resulting in zero timesteps.
# TODO: submit upstream fix for zero-step img2img
if timesteps.numel() == 0:
timesteps = self.scheduler.timesteps[-1:]
adjusted_steps = timesteps.numel()
return timesteps, adjusted_steps
def inpaint_from_embeddings(
self,
init_image: torch.FloatTensor,
mask: torch.FloatTensor,
strength: float,
num_inference_steps: int,
conditioning_data: ConditioningData,
*, callback: Callable[[PipelineIntermediateState], None] = None,
run_id=None,
noise_func=None,
) -> InvokeAIStableDiffusionPipelineOutput:
device = self.unet.device
latents_dtype = self.unet.dtype
if isinstance(init_image, PIL.Image.Image):
init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB'))
init_image = init_image.to(device=device, dtype=latents_dtype)
mask = mask.to(device=device, dtype=latents_dtype)
if init_image.dim() == 3:
init_image = init_image.unsqueeze(0)
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength, device=device)
# 6. Prepare latent variables
# can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents
# because we have our own noise function
init_image_latents = self.non_noised_latents_from_image(init_image, device=device, dtype=latents_dtype)
noise = noise_func(init_image_latents)
if mask.dim() == 3:
mask = mask.unsqueeze(0)
latent_mask = tv_resize(mask, init_image_latents.shape[-2:], T.InterpolationMode.BILINEAR) \
.to(device=device, dtype=latents_dtype)
guidance: List[Callable] = []
if is_inpainting_model(self.unet):
# You'd think the inpainting model wouldn't be paying attention to the area it is going to repaint
# (that's why there's a mask!) but it seems to really want that blanked out.
masked_init_image = init_image * torch.where(mask < 0.5, 1, 0)
masked_latents = self.non_noised_latents_from_image(masked_init_image, device=device, dtype=latents_dtype)
# TODO: we should probably pass this in so we don't have to try/finally around setting it.
self.invokeai_diffuser.model_forward_callback = \
AddsMaskLatents(self._unet_forward, latent_mask, masked_latents)
else:
guidance.append(AddsMaskGuidance(latent_mask, init_image_latents, self.scheduler, noise))
try:
result_latents, result_attention_maps = self.latents_from_embeddings(
init_image_latents, num_inference_steps,
conditioning_data, noise=noise, timesteps=timesteps,
additional_guidance=guidance,
run_id=run_id, callback=callback)
finally:
self.invokeai_diffuser.model_forward_callback = self._unet_forward
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
with torch.inference_mode():
image = self.decode_latents(result_latents)
output = InvokeAIStableDiffusionPipelineOutput(images=image, nsfw_content_detected=[], attention_map_saver=result_attention_maps)
return self.check_for_safety(output, dtype=conditioning_data.dtype)
def non_noised_latents_from_image(self, init_image, *, device: torch.device, dtype):
init_image = init_image.to(device=device, dtype=dtype)
with torch.inference_mode():
if device.type == 'mps':
# workaround for torch MPS bug that has been fixed in https://github.com/kulinseth/pytorch/pull/222
# TODO remove this workaround once kulinseth#222 is merged to pytorch mainline
self.vae.to('cpu')
init_image = init_image.to('cpu')
init_latent_dist = self.vae.encode(init_image).latent_dist
init_latents = init_latent_dist.sample().to(dtype=dtype) # FIXME: uses torch.randn. make reproducible!
if device.type == 'mps':
self.vae.to(device)
init_latents = init_latents.to(device)
init_latents = 0.18215 * init_latents
return init_latents
def check_for_safety(self, output, dtype):
with torch.inference_mode():
screened_images, has_nsfw_concept = self.run_safety_checker(
output.images, device=self._execution_device, dtype=dtype)
screened_attention_map_saver = None
if has_nsfw_concept is None or not has_nsfw_concept:
screened_attention_map_saver = output.attention_map_saver
return InvokeAIStableDiffusionPipelineOutput(screened_images,
has_nsfw_concept,
# block the attention maps if NSFW content is detected
attention_map_saver=screened_attention_map_saver)
@torch.inference_mode()
def get_learned_conditioning(self, c: List[List[str]], *, return_tokens=True, fragment_weights=None):
"""
Compatibility function for ldm.models.diffusion.ddpm.LatentDiffusion.
"""
return self.prompt_fragments_to_embeddings_converter.get_embeddings_for_weighted_prompt_fragments(
text=c,
fragment_weights=fragment_weights,
should_return_tokens=return_tokens,
device=self.device)
@property
def cond_stage_model(self):
return self.prompt_fragments_to_embeddings_converter
@torch.inference_mode()
def _tokenize(self, prompt: Union[str, List[str]]):
return self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
@property
def channels(self) -> int:
"""Compatible with DiffusionWrapper"""
return self.unet.in_channels
def debug_latents(self, latents, msg):
with torch.inference_mode():
from ldm.util import debug_image
decoded = self.numpy_to_pil(self.decode_latents(latents))
for i, img in enumerate(decoded):
debug_image(img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True)