mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
4a3951681c
- Avoid running scanner twice on same file during the probing and conversion process. - Clean up diagnostic messages.
1046 lines
44 KiB
Python
1046 lines
44 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Adapted for use as a module by Lincoln Stein <lstein@gmail.com>
|
|
# Original file at: https://github.com/huggingface/diffusers/blob/main/scripts/convert_ldm_original_checkpoint_to_diffusers.py
|
|
""" Conversion script for the LDM checkpoints. """
|
|
|
|
import re
|
|
import torch
|
|
import warnings
|
|
from pathlib import Path
|
|
from ldm.invoke.globals import (
|
|
global_cache_dir,
|
|
global_config_dir,
|
|
)
|
|
from ldm.invoke.model_manager import ModelManager, SDLegacyType
|
|
from safetensors.torch import load_file
|
|
from typing import Union
|
|
|
|
try:
|
|
from omegaconf import OmegaConf
|
|
except ImportError:
|
|
raise ImportError(
|
|
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
|
|
)
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
HeunDiscreteScheduler,
|
|
LDMTextToImagePipeline,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
StableDiffusionPipeline,
|
|
UNet2DConditionModel,
|
|
logging as dlogging,
|
|
)
|
|
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
|
|
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder, PaintByExamplePipeline
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.utils import is_safetensors_available
|
|
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig
|
|
|
|
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1):
|
|
"""
|
|
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
|
"""
|
|
if n_shave_prefix_segments >= 0:
|
|
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
|
else:
|
|
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item.replace("in_layers.0", "norm1")
|
|
new_item = new_item.replace("in_layers.2", "conv1")
|
|
|
|
new_item = new_item.replace("out_layers.0", "norm2")
|
|
new_item = new_item.replace("out_layers.3", "conv2")
|
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
|
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
|
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
|
|
|
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
|
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
|
|
|
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
|
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
|
|
|
new_item = new_item.replace("q.weight", "query.weight")
|
|
new_item = new_item.replace("q.bias", "query.bias")
|
|
|
|
new_item = new_item.replace("k.weight", "key.weight")
|
|
new_item = new_item.replace("k.bias", "key.bias")
|
|
|
|
new_item = new_item.replace("v.weight", "value.weight")
|
|
new_item = new_item.replace("v.bias", "value.bias")
|
|
|
|
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
|
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def assign_to_checkpoint(
|
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
|
|
):
|
|
"""
|
|
This does the final conversion step: take locally converted weights and apply a global renaming
|
|
to them. It splits attention layers, and takes into account additional replacements
|
|
that may arise.
|
|
|
|
Assigns the weights to the new checkpoint.
|
|
"""
|
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
|
|
|
# Splits the attention layers into three variables.
|
|
if attention_paths_to_split is not None:
|
|
for path, path_map in attention_paths_to_split.items():
|
|
old_tensor = old_checkpoint[path]
|
|
channels = old_tensor.shape[0] // 3
|
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
|
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
|
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
|
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
|
|
|
for path in paths:
|
|
new_path = path["new"]
|
|
|
|
# These have already been assigned
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
|
continue
|
|
|
|
# Global renaming happens here
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
|
|
|
if additional_replacements is not None:
|
|
for replacement in additional_replacements:
|
|
new_path = new_path.replace(replacement["old"], replacement["new"])
|
|
|
|
# proj_attn.weight has to be converted from conv 1D to linear
|
|
if "proj_attn.weight" in new_path:
|
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
|
else:
|
|
checkpoint[new_path] = old_checkpoint[path["old"]]
|
|
|
|
|
|
def conv_attn_to_linear(checkpoint):
|
|
keys = list(checkpoint.keys())
|
|
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
|
for key in keys:
|
|
if ".".join(key.split(".")[-2:]) in attn_keys:
|
|
if checkpoint[key].ndim > 2:
|
|
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
|
elif "proj_attn.weight" in key:
|
|
if checkpoint[key].ndim > 2:
|
|
checkpoint[key] = checkpoint[key][:, :, 0]
|
|
|
|
|
|
def create_unet_diffusers_config(original_config, image_size: int):
|
|
"""
|
|
Creates a config for the diffusers based on the config of the LDM model.
|
|
"""
|
|
unet_params = original_config.model.params.unet_config.params
|
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
|
|
|
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
|
|
|
|
down_block_types = []
|
|
resolution = 1
|
|
for i in range(len(block_out_channels)):
|
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
|
|
down_block_types.append(block_type)
|
|
if i != len(block_out_channels) - 1:
|
|
resolution *= 2
|
|
|
|
up_block_types = []
|
|
for i in range(len(block_out_channels)):
|
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
|
|
up_block_types.append(block_type)
|
|
resolution //= 2
|
|
|
|
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
|
|
|
|
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
|
|
use_linear_projection = (
|
|
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
|
|
)
|
|
if use_linear_projection:
|
|
# stable diffusion 2-base-512 and 2-768
|
|
if head_dim is None:
|
|
head_dim = [5, 10, 20, 20]
|
|
|
|
config = dict(
|
|
sample_size=image_size // vae_scale_factor,
|
|
in_channels=unet_params.in_channels,
|
|
out_channels=unet_params.out_channels,
|
|
down_block_types=tuple(down_block_types),
|
|
up_block_types=tuple(up_block_types),
|
|
block_out_channels=tuple(block_out_channels),
|
|
layers_per_block=unet_params.num_res_blocks,
|
|
cross_attention_dim=unet_params.context_dim,
|
|
attention_head_dim=head_dim,
|
|
use_linear_projection=use_linear_projection,
|
|
)
|
|
|
|
return config
|
|
|
|
|
|
def create_vae_diffusers_config(original_config, image_size: int):
|
|
"""
|
|
Creates a config for the diffusers based on the config of the LDM model.
|
|
"""
|
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
|
_ = original_config.model.params.first_stage_config.params.embed_dim
|
|
|
|
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
|
|
|
config = dict(
|
|
sample_size=image_size,
|
|
in_channels=vae_params.in_channels,
|
|
out_channels=vae_params.out_ch,
|
|
down_block_types=tuple(down_block_types),
|
|
up_block_types=tuple(up_block_types),
|
|
block_out_channels=tuple(block_out_channels),
|
|
latent_channels=vae_params.z_channels,
|
|
layers_per_block=vae_params.num_res_blocks,
|
|
)
|
|
return config
|
|
|
|
|
|
def create_diffusers_schedular(original_config):
|
|
schedular = DDIMScheduler(
|
|
num_train_timesteps=original_config.model.params.timesteps,
|
|
beta_start=original_config.model.params.linear_start,
|
|
beta_end=original_config.model.params.linear_end,
|
|
beta_schedule="scaled_linear",
|
|
)
|
|
return schedular
|
|
|
|
|
|
def create_ldm_bert_config(original_config):
|
|
bert_params = original_config.model.params.cond_stage_config.params
|
|
config = LDMBertConfig(
|
|
d_model=bert_params.n_embed,
|
|
encoder_layers=bert_params.n_layer,
|
|
encoder_ffn_dim=bert_params.n_embed * 4,
|
|
)
|
|
return config
|
|
|
|
|
|
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
|
|
"""
|
|
Takes a state dict and a config, and returns a converted checkpoint.
|
|
"""
|
|
|
|
# extract state_dict for UNet
|
|
unet_state_dict = {}
|
|
keys = list(checkpoint.keys())
|
|
|
|
unet_key = "model.diffusion_model."
|
|
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
|
if sum(k.startswith("model_ema") for k in keys) > 100:
|
|
print(f" | Checkpoint {path} has both EMA and non-EMA weights.")
|
|
if extract_ema:
|
|
print(
|
|
' | Extracting EMA weights (usually better for inference)'
|
|
)
|
|
for key in keys:
|
|
if key.startswith("model.diffusion_model"):
|
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
|
else:
|
|
print(
|
|
' | Extracting only the non-EMA weights (usually better for fine-tuning)'
|
|
)
|
|
|
|
for key in keys:
|
|
if key.startswith(unet_key):
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
|
|
|
# Retrieves the keys for the input blocks only
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
|
input_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
|
for layer_id in range(num_input_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the middle blocks only
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
|
middle_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
|
for layer_id in range(num_middle_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the output blocks only
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
|
output_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
|
for layer_id in range(num_output_blocks)
|
|
}
|
|
|
|
for i in range(1, num_input_blocks):
|
|
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
|
|
|
resnets = [
|
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
|
]
|
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
|
f"input_blocks.{i}.0.op.weight"
|
|
)
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
|
f"input_blocks.{i}.0.op.bias"
|
|
)
|
|
|
|
paths = renew_resnet_paths(resnets)
|
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
resnet_0 = middle_blocks[0]
|
|
attentions = middle_blocks[1]
|
|
resnet_1 = middle_blocks[2]
|
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0)
|
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1)
|
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
|
|
|
attentions_paths = renew_attention_paths(attentions)
|
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(
|
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
for i in range(num_output_blocks):
|
|
block_id = i // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
|
output_block_list = {}
|
|
|
|
for layer in output_block_layers:
|
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
|
if layer_id in output_block_list:
|
|
output_block_list[layer_id].append(layer_name)
|
|
else:
|
|
output_block_list[layer_id] = [layer_name]
|
|
|
|
if len(output_block_list) > 1:
|
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
|
|
|
resnet_0_paths = renew_resnet_paths(resnets)
|
|
paths = renew_resnet_paths(resnets)
|
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
|
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
|
f"output_blocks.{i}.{index}.conv.weight"
|
|
]
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
|
f"output_blocks.{i}.{index}.conv.bias"
|
|
]
|
|
|
|
# Clear attentions as they have been attributed above.
|
|
if len(attentions) == 2:
|
|
attentions = []
|
|
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
meta_path = {
|
|
"old": f"output_blocks.{i}.1",
|
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
else:
|
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
|
for path in resnet_0_paths:
|
|
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path]
|
|
|
|
return new_checkpoint
|
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config):
|
|
# extract state dict for VAE
|
|
vae_state_dict = {}
|
|
vae_key = "first_stage_model."
|
|
keys = list(checkpoint.keys())
|
|
for key in keys:
|
|
if key.startswith(vae_key):
|
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
|
|
|
# Retrieves the keys for the encoder down blocks only
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
|
down_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the decoder up blocks only
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
|
up_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
|
}
|
|
|
|
for i in range(num_down_blocks):
|
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
|
f"encoder.down.{i}.downsample.conv.weight"
|
|
)
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
|
f"encoder.down.{i}.downsample.conv.bias"
|
|
)
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
|
|
for i in range(num_up_blocks):
|
|
block_id = num_up_blocks - 1 - i
|
|
resnets = [
|
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
|
]
|
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
|
f"decoder.up.{block_id}.upsample.conv.weight"
|
|
]
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
|
f"decoder.up.{block_id}.upsample.conv.bias"
|
|
]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
return new_checkpoint
|
|
|
|
|
|
def convert_ldm_bert_checkpoint(checkpoint, config):
|
|
def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
|
|
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
|
|
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
|
|
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
|
|
|
|
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
|
|
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
|
|
|
|
def _copy_linear(hf_linear, pt_linear):
|
|
hf_linear.weight = pt_linear.weight
|
|
hf_linear.bias = pt_linear.bias
|
|
|
|
def _copy_layer(hf_layer, pt_layer):
|
|
# copy layer norms
|
|
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
|
|
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
|
|
|
|
# copy attn
|
|
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
|
|
|
|
# copy MLP
|
|
pt_mlp = pt_layer[1][1]
|
|
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
|
|
_copy_linear(hf_layer.fc2, pt_mlp.net[2])
|
|
|
|
def _copy_layers(hf_layers, pt_layers):
|
|
for i, hf_layer in enumerate(hf_layers):
|
|
if i != 0:
|
|
i += i
|
|
pt_layer = pt_layers[i : i + 2]
|
|
_copy_layer(hf_layer, pt_layer)
|
|
|
|
hf_model = LDMBertModel(config).eval()
|
|
|
|
# copy embeds
|
|
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
|
|
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight
|
|
|
|
# copy layer norm
|
|
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
|
|
|
|
# copy hidden layers
|
|
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
|
|
|
|
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
|
|
|
|
return hf_model
|
|
|
|
|
|
def convert_ldm_clip_checkpoint(checkpoint):
|
|
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14",cache_dir=global_cache_dir('hub'))
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
text_model_dict = {}
|
|
|
|
for key in keys:
|
|
if key.startswith("cond_stage_model.transformer"):
|
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
|
|
|
text_model.load_state_dict(text_model_dict)
|
|
|
|
return text_model
|
|
|
|
|
|
textenc_conversion_lst = [
|
|
("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"),
|
|
("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
|
|
("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"),
|
|
("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"),
|
|
]
|
|
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}
|
|
|
|
textenc_transformer_conversion_lst = [
|
|
# (stable-diffusion, HF Diffusers)
|
|
("resblocks.", "text_model.encoder.layers."),
|
|
("ln_1", "layer_norm1"),
|
|
("ln_2", "layer_norm2"),
|
|
(".c_fc.", ".fc1."),
|
|
(".c_proj.", ".fc2."),
|
|
(".attn", ".self_attn"),
|
|
("ln_final.", "transformer.text_model.final_layer_norm."),
|
|
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
|
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
|
]
|
|
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
|
|
textenc_pattern = re.compile("|".join(protected.keys()))
|
|
|
|
|
|
def convert_paint_by_example_checkpoint(checkpoint):
|
|
cache_dir = global_cache_dir('hub')
|
|
config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
|
|
model = PaintByExampleImageEncoder(config)
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
text_model_dict = {}
|
|
|
|
for key in keys:
|
|
if key.startswith("cond_stage_model.transformer"):
|
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
|
|
|
# load clip vision
|
|
model.model.load_state_dict(text_model_dict)
|
|
|
|
# load mapper
|
|
keys_mapper = {
|
|
k[len("cond_stage_model.mapper.res") :]: v
|
|
for k, v in checkpoint.items()
|
|
if k.startswith("cond_stage_model.mapper")
|
|
}
|
|
|
|
MAPPING = {
|
|
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
|
|
"attn.c_proj": ["attn1.to_out.0"],
|
|
"ln_1": ["norm1"],
|
|
"ln_2": ["norm3"],
|
|
"mlp.c_fc": ["ff.net.0.proj"],
|
|
"mlp.c_proj": ["ff.net.2"],
|
|
}
|
|
|
|
mapped_weights = {}
|
|
for key, value in keys_mapper.items():
|
|
prefix = key[: len("blocks.i")]
|
|
suffix = key.split(prefix)[-1].split(".")[-1]
|
|
name = key.split(prefix)[-1].split(suffix)[0][1:-1]
|
|
mapped_names = MAPPING[name]
|
|
|
|
num_splits = len(mapped_names)
|
|
for i, mapped_name in enumerate(mapped_names):
|
|
new_name = ".".join([prefix, mapped_name, suffix])
|
|
shape = value.shape[0] // num_splits
|
|
mapped_weights[new_name] = value[i * shape : (i + 1) * shape]
|
|
|
|
model.mapper.load_state_dict(mapped_weights)
|
|
|
|
# load final layer norm
|
|
model.final_layer_norm.load_state_dict(
|
|
{
|
|
"bias": checkpoint["cond_stage_model.final_ln.bias"],
|
|
"weight": checkpoint["cond_stage_model.final_ln.weight"],
|
|
}
|
|
)
|
|
|
|
# load final proj
|
|
model.proj_out.load_state_dict(
|
|
{
|
|
"bias": checkpoint["proj_out.bias"],
|
|
"weight": checkpoint["proj_out.weight"],
|
|
}
|
|
)
|
|
|
|
# load uncond vector
|
|
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
|
|
return model
|
|
|
|
|
|
def convert_open_clip_checkpoint(checkpoint):
|
|
cache_dir=global_cache_dir('hub')
|
|
text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder", cache_dir=cache_dir)
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
text_model_dict = {}
|
|
|
|
if 'cond_stage_model.model.text_projection' in keys:
|
|
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
|
|
elif 'cond_stage_model.model.ln_final.bias' in keys:
|
|
d_model = int(checkpoint['cond_stage_model.model.ln_final.bias'].shape[0])
|
|
else:
|
|
raise KeyError('Expected key "cond_stage_model.model.text_projection" not found in model')
|
|
|
|
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
|
|
|
|
for key in keys:
|
|
if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
|
|
continue
|
|
if key in textenc_conversion_map:
|
|
text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
|
|
if key.startswith("cond_stage_model.model.transformer."):
|
|
new_key = key[len("cond_stage_model.model.transformer.") :]
|
|
if new_key.endswith(".in_proj_weight"):
|
|
new_key = new_key[: -len(".in_proj_weight")]
|
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
|
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
|
|
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
|
|
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
|
|
elif new_key.endswith(".in_proj_bias"):
|
|
new_key = new_key[: -len(".in_proj_bias")]
|
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
|
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
|
|
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
|
|
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
|
|
else:
|
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
|
|
|
text_model_dict[new_key] = checkpoint[key]
|
|
|
|
text_model.load_state_dict(text_model_dict)
|
|
|
|
return text_model
|
|
|
|
def load_pipeline_from_original_stable_diffusion_ckpt(
|
|
checkpoint_path:str,
|
|
original_config_file:str=None,
|
|
num_in_channels:int=None,
|
|
scheduler_type:str='pndm',
|
|
pipeline_type:str=None,
|
|
image_size:int=None,
|
|
prediction_type:str=None,
|
|
extract_ema:bool=True,
|
|
upcast_attn:bool=False,
|
|
vae:AutoencoderKL=None,
|
|
precision:torch.dtype=torch.float32,
|
|
return_generator_pipeline:bool=False,
|
|
scan_needed:bool=True,
|
|
)->Union[StableDiffusionPipeline,StableDiffusionGeneratorPipeline]:
|
|
'''
|
|
Load a Stable Diffusion pipeline object from a CompVis-style `.ckpt`/`.safetensors` file and (ideally) a `.yaml`
|
|
config file.
|
|
|
|
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
|
|
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
|
|
recommended that you override the default values and/or supply an `original_config_file` wherever possible.
|
|
|
|
:param checkpoint_path: Path to `.ckpt` file.
|
|
:param original_config_file: Path to `.yaml` config file corresponding to the original architecture.
|
|
If `None`, will be automatically inferred by looking for a key that only exists in SD2.0 models.
|
|
:param image_size: The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Diffusion v2
|
|
Base. Use 768 for Stable Diffusion v2.
|
|
:param prediction_type: The prediction type that the model was trained on. Use `'epsilon'` for Stable Diffusion
|
|
v1.X and Stable Diffusion v2 Base. Use `'v-prediction'` for Stable Diffusion v2.
|
|
:param num_in_channels: The number of input channels. If `None` number of input channels will be automatically
|
|
inferred.
|
|
:param scheduler_type: Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler",
|
|
"euler-ancestral", "dpm", "ddim"]`. :param model_type: The pipeline type. `None` to automatically infer, or one of
|
|
`["FrozenOpenCLIPEmbedder", "FrozenCLIPEmbedder", "PaintByExample"]`. :param extract_ema: Only relevant for
|
|
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights
|
|
or not. Defaults to `False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher
|
|
quality images for inference. Non-EMA weights are usually better to continue fine-tuning.
|
|
:param precision: precision to use - torch.float16, torch.float32 or torch.autocast
|
|
:param upcast_attention: Whether the attention computation should always be upcasted. This is necessary when
|
|
running stable diffusion 2.1.
|
|
'''
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter('ignore')
|
|
verbosity = dlogging.get_verbosity()
|
|
dlogging.set_verbosity_error()
|
|
|
|
if Path(checkpoint_path).suffix == '.ckpt':
|
|
if scan_needed:
|
|
ModelManager.scan_model(checkpoint_path,checkpoint_path)
|
|
checkpoint = torch.load(checkpoint_path)
|
|
else:
|
|
checkpoint = load_file(checkpoint_path)
|
|
cache_dir = global_cache_dir('hub')
|
|
pipeline_class = StableDiffusionGeneratorPipeline if return_generator_pipeline else StableDiffusionPipeline
|
|
|
|
# Sometimes models don't have the global_step item
|
|
if "global_step" in checkpoint:
|
|
global_step = checkpoint["global_step"]
|
|
else:
|
|
print(" | global_step key not found in model")
|
|
global_step = None
|
|
|
|
# sometimes there is a state_dict key and sometimes not
|
|
if 'state_dict' in checkpoint:
|
|
checkpoint = checkpoint["state_dict"]
|
|
|
|
upcast_attention = False
|
|
if original_config_file is None:
|
|
model_type = ModelManager.probe_model_type(checkpoint)
|
|
|
|
if model_type == SDLegacyType.V2_v:
|
|
original_config_file = global_config_dir() / 'stable-diffusion' / 'v2-inference-v.yaml'
|
|
if global_step == 110000:
|
|
# v2.1 needs to upcast attention
|
|
upcast_attention = True
|
|
elif model_type == SDLegacyType.V2_e:
|
|
original_config_file = (
|
|
global_config_dir() / "stable-diffusion" / "v2-inference.yaml"
|
|
)
|
|
|
|
elif model_type == SDLegacyType.V1_INPAINT:
|
|
original_config_file = global_config_dir() / 'stable-diffusion' / 'v1-inpainting-inference.yaml'
|
|
|
|
elif model_type == SDLegacyType.V1:
|
|
original_config_file = global_config_dir() / 'stable-diffusion' / 'v1-inference.yaml'
|
|
|
|
else:
|
|
raise Exception('Unknown checkpoint type')
|
|
|
|
original_config = OmegaConf.load(original_config_file)
|
|
|
|
if num_in_channels is not None:
|
|
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
|
|
|
|
if (
|
|
"parameterization" in original_config["model"]["params"]
|
|
and original_config["model"]["params"]["parameterization"] == "v"
|
|
):
|
|
if prediction_type is None:
|
|
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
|
|
# as it relies on a brittle global step parameter here
|
|
prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
|
|
if image_size is None:
|
|
# NOTE: For stable diffusion 2 base one has to pass `image_size==512`
|
|
# as it relies on a brittle global step parameter here
|
|
image_size = 512 if global_step == 875000 else 768
|
|
else:
|
|
if prediction_type is None:
|
|
prediction_type = "epsilon"
|
|
if image_size is None:
|
|
image_size = 512
|
|
|
|
num_train_timesteps = original_config.model.params.timesteps
|
|
beta_start = original_config.model.params.linear_start
|
|
beta_end = original_config.model.params.linear_end
|
|
|
|
scheduler = DDIMScheduler(
|
|
beta_end=beta_end,
|
|
beta_schedule="scaled_linear",
|
|
beta_start=beta_start,
|
|
num_train_timesteps=num_train_timesteps,
|
|
steps_offset=1,
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
prediction_type=prediction_type,
|
|
)
|
|
# make sure scheduler works correctly with DDIM
|
|
scheduler.register_to_config(clip_sample=False)
|
|
|
|
if scheduler_type == "pndm":
|
|
config = dict(scheduler.config)
|
|
config["skip_prk_steps"] = True
|
|
scheduler = PNDMScheduler.from_config(config)
|
|
elif scheduler_type == "lms":
|
|
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "heun":
|
|
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "euler":
|
|
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "euler-ancestral":
|
|
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "dpm":
|
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "ddim":
|
|
scheduler = scheduler
|
|
else:
|
|
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
|
|
|
|
# Convert the UNet2DConditionModel model.
|
|
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
|
|
unet_config["upcast_attention"] = upcast_attention
|
|
unet = UNet2DConditionModel(**unet_config)
|
|
|
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
|
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
|
|
)
|
|
|
|
unet.load_state_dict(converted_unet_checkpoint)
|
|
|
|
# Convert the VAE model, or use the one passed
|
|
if not vae:
|
|
print(' | Using checkpoint model\'s original VAE')
|
|
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
|
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
|
|
|
vae = AutoencoderKL(**vae_config)
|
|
vae.load_state_dict(converted_vae_checkpoint)
|
|
else:
|
|
print(' | Using VAE specified in config')
|
|
|
|
# Convert the text model.
|
|
model_type = pipeline_type
|
|
if model_type is None:
|
|
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
|
|
|
|
if model_type == "FrozenOpenCLIPEmbedder":
|
|
text_model = convert_open_clip_checkpoint(checkpoint)
|
|
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2",
|
|
subfolder="tokenizer",
|
|
cache_dir=cache_dir,
|
|
)
|
|
pipe = pipeline_class(
|
|
vae=vae,
|
|
text_encoder=text_model,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False,
|
|
)
|
|
elif model_type == "PaintByExample":
|
|
vision_model = convert_paint_by_example_checkpoint(checkpoint)
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker",cache_dir=cache_dir)
|
|
pipe = PaintByExamplePipeline(
|
|
vae=vae,
|
|
image_encoder=vision_model,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=None,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
elif model_type in ['FrozenCLIPEmbedder','WeightedFrozenCLIPEmbedder']:
|
|
text_model = convert_ldm_clip_checkpoint(checkpoint)
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
|
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker',cache_dir=global_cache_dir("hub"))
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker",cache_dir=cache_dir)
|
|
pipe = pipeline_class(
|
|
vae=vae.to(precision),
|
|
text_encoder=text_model.to(precision),
|
|
tokenizer=tokenizer,
|
|
unet=unet.to(precision),
|
|
scheduler=scheduler,
|
|
safety_checker=None if return_generator_pipeline else safety_checker.to(precision),
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
else:
|
|
text_config = create_ldm_bert_config(original_config)
|
|
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
|
|
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased",cache_dir=cache_dir)
|
|
pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
|
|
dlogging.set_verbosity(verbosity)
|
|
|
|
return pipe
|
|
|
|
def convert_ckpt_to_diffuser(
|
|
checkpoint_path:Union[str,Path],
|
|
dump_path:Union[str,Path],
|
|
**kwargs,
|
|
):
|
|
'''
|
|
Takes all the arguments of load_pipeline_from_original_stable_diffusion_ckpt(),
|
|
and in addition a path-like object indicating the location of the desired diffusers
|
|
model to be written.
|
|
'''
|
|
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
|
|
checkpoint_path,
|
|
**kwargs
|
|
)
|
|
|
|
pipe.save_pretrained(
|
|
dump_path,
|
|
safe_serialization=is_safetensors_available(),
|
|
)
|