InvokeAI/ldm/invoke/dynamic_prompts.py
Lincoln Stein a79d40519c fix batch generation logfile name to be compatible with Windows OS
- `invokeai-batch --invoke` was created a time-stamped logfile with colons in its
  name, which is a Windows no-no. This corrects the problem by writing
  the timestamp out as "13-06-2023_8-35-10"

- Closes #3005
2023-03-23 21:43:21 -04:00

536 lines
16 KiB
Python
Executable File

#!/usr/bin/env python
"""
Simple script to generate a file of InvokeAI prompts and settings
that scan across steps and other parameters.
"""
import argparse
import io
import json
import os
import pydoc
import re
import shutil
import sys
import time
from contextlib import redirect_stderr
from io import TextIOBase
from itertools import product
from multiprocessing import Process
from multiprocessing.connection import Connection, Pipe
from pathlib import Path
from tempfile import gettempdir
from typing import Callable, Iterable, List
import numpy as np
import yaml
from omegaconf import OmegaConf, dictconfig, listconfig
def expand_prompts(
template_file: Path,
run_invoke: bool = False,
invoke_model: str = None,
invoke_outdir: Path = None,
processes_per_gpu: int = 1,
):
"""
:param template_file: A YAML file containing templated prompts and args
:param run_invoke: A boolean which if True will pass expanded prompts to invokeai CLI
:param invoke_model: Name of the model to load when run_invoke is true; otherwise uses default
:param invoke_outdir: Directory for outputs when run_invoke is true; otherwise uses default
"""
if template_file.name.endswith(".json"):
with open(template_file, "r") as file:
with io.StringIO(yaml.dump(json.load(file))) as fh:
conf = OmegaConf.load(fh)
else:
conf = OmegaConf.load(template_file)
# loading here to avoid long wait for help message
import torch
torch.multiprocessing.set_start_method("spawn")
gpu_count = torch.cuda.device_count() if torch.cuda.is_available() else 1
commands = expanded_invokeai_commands(conf, run_invoke)
children = list()
try:
if run_invoke:
invokeai_args = [shutil.which("invokeai"), "--from_file", "-"]
if invoke_model:
invokeai_args.extend(("--model", invoke_model))
if invoke_outdir:
outdir = os.path.expanduser(invoke_outdir)
invokeai_args.extend(("--outdir", outdir))
else:
outdir = gettempdir()
logdir = Path(outdir, "invokeai-batch-logs")
processes_to_launch = gpu_count * processes_per_gpu
print(
f">> Spawning {processes_to_launch} invokeai processes across {gpu_count} CUDA gpus",
file=sys.stderr,
)
print(
f'>> Outputs will be written into {invoke_outdir or "default InvokeAI outputs directory"}, and error logs will be written to {logdir}',
file=sys.stderr,
)
import ldm.invoke.CLI
parent_conn, child_conn = Pipe()
children = set()
for i in range(processes_to_launch):
p = Process(
target=_run_invoke,
kwargs=dict(
entry_point=ldm.invoke.CLI.main,
conn_in=child_conn,
conn_out=parent_conn,
args=invokeai_args,
gpu=i % gpu_count,
logdir=logdir,
),
)
p.start()
children.add(p)
child_conn.close()
sequence = 0
for command in commands:
sequence += 1
parent_conn.send(
command + f' --fnformat="dp.{sequence:04}.{{prompt}}.png"'
)
parent_conn.close()
else:
for command in commands:
print(command)
except KeyboardInterrupt:
for p in children:
p.terminate()
class MessageToStdin(object):
def __init__(self, connection: Connection):
self.connection = connection
self.linebuffer = list()
def readline(self) -> str:
try:
if len(self.linebuffer) == 0:
message = self.connection.recv()
self.linebuffer = message.split("\n")
result = self.linebuffer.pop(0)
return result
except EOFError:
return None
class FilterStream(object):
def __init__(
self, stream: TextIOBase, include: re.Pattern = None, exclude: re.Pattern = None
):
self.stream = stream
self.include = include
self.exclude = exclude
def write(self, data: str):
if self.include and self.include.match(data):
self.stream.write(data)
self.stream.flush()
elif self.exclude and not self.exclude.match(data):
self.stream.write(data)
self.stream.flush()
def flush(self):
self.stream.flush()
def _run_invoke(
entry_point: Callable,
conn_in: Connection,
conn_out: Connection,
args: List[str],
logdir: Path,
gpu: int = 0,
):
pid = os.getpid()
logdir.mkdir(parents=True, exist_ok=True)
logfile = Path(logdir, f'{time.strftime("%Y-%m-%d_%H-%M-%S")}-pid={pid}.txt')
print(
f">> Process {pid} running on GPU {gpu}; logging to {logfile}", file=sys.stderr
)
conn_out.close()
os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu}"
sys.argv = args
sys.stdin = MessageToStdin(conn_in)
sys.stdout = FilterStream(sys.stdout, include=re.compile("^\[\d+\]"))
with open(logfile, "w") as stderr, redirect_stderr(stderr):
entry_point()
def _filter_output(stream: TextIOBase):
while line := stream.readline():
if re.match("^\[\d+\]", line):
print(line)
def main():
parser = argparse.ArgumentParser(
description=HELP,
)
parser.add_argument(
"template_file",
type=Path,
nargs="?",
help="path to a template file, use --example to generate an example file",
)
parser.add_argument(
"--example",
action="store_true",
default=False,
help=f'Print an example template file in YAML format. Use "{sys.argv[0]} --example > example.yaml" to save output to a file',
)
parser.add_argument(
"--json-example",
action="store_true",
default=False,
help=f'Print an example template file in json format. Use "{sys.argv[0]} --json-example > example.json" to save output to a file',
)
parser.add_argument(
"--instructions",
"-i",
dest="instructions",
action="store_true",
default=False,
help="Print verbose instructions.",
)
parser.add_argument(
"--invoke",
action="store_true",
help="Execute invokeai using specified optional --model, --processes_per_gpu and --outdir",
)
parser.add_argument(
"--model",
help="Feed the generated prompts to the invokeai CLI using the indicated model. Will be overriden by a model: section in template file.",
)
parser.add_argument(
"--outdir", type=Path, help="Write images and log into indicated directory"
)
parser.add_argument(
"--processes_per_gpu",
type=int,
default=1,
help="When executing invokeai, how many parallel processes to execute per CUDA GPU.",
)
opt = parser.parse_args()
if opt.example:
print(EXAMPLE_TEMPLATE_FILE)
sys.exit(0)
if opt.json_example:
print(_yaml_to_json(EXAMPLE_TEMPLATE_FILE))
sys.exit(0)
if opt.instructions:
pydoc.pager(INSTRUCTIONS)
sys.exit(0)
if not opt.template_file:
parser.print_help()
sys.exit(-1)
expand_prompts(
template_file=opt.template_file,
run_invoke=opt.invoke,
invoke_model=opt.model,
invoke_outdir=opt.outdir,
processes_per_gpu=opt.processes_per_gpu,
)
def expanded_invokeai_commands(
conf: OmegaConf, always_switch_models: bool = False
) -> List[List[str]]:
models = expand_values(conf.get("model"))
steps = expand_values(conf.get("steps")) or [30]
cfgs = expand_values(conf.get("cfg")) or [7.5]
samplers = expand_values(conf.get("sampler")) or ["ddim"]
seeds = expand_values(conf.get("seed")) or [0]
dimensions = expand_values(conf.get("dimensions")) or ["512x512"]
init_img = expand_values(conf.get("init_img")) or [""]
perlin = expand_values(conf.get("perlin")) or [0]
threshold = expand_values(conf.get("threshold")) or [0]
strength = expand_values(conf.get("strength")) or [0.75]
prompts = expand_prompt(conf.get("prompt")) or ["banana sushi"]
cross_product = product(
*[
models,
seeds,
prompts,
samplers,
cfgs,
steps,
perlin,
threshold,
init_img,
strength,
dimensions,
]
)
previous_model = None
result = list()
for p in cross_product:
(
model,
seed,
prompt,
sampler,
cfg,
step,
perlin,
threshold,
init_img,
strength,
dimensions,
) = tuple(p)
(width, height) = dimensions.split("x")
switch_args = (
f"!switch {model}\n"
if always_switch_models or previous_model != model
else ""
)
image_args = f"-I{init_img} -f{strength}" if init_img else ""
command = f"{switch_args}{prompt} -S{seed} -A{sampler} -C{cfg} -s{step} {image_args} --perlin={perlin} --threshold={threshold} -W{width} -H{height}"
result.append(command)
previous_model = model
return result
def expand_prompt(
stanza: str | dict | listconfig.ListConfig | dictconfig.DictConfig,
) -> list | range:
if not stanza:
return None
if isinstance(stanza, listconfig.ListConfig):
return stanza
if isinstance(stanza, str):
return [stanza]
if not isinstance(stanza, dictconfig.DictConfig):
raise ValueError(f"Unrecognized template: {stanza}")
if not (template := stanza.get("template")):
raise KeyError('"prompt" section must contain a "template" definition')
fragment_labels = re.findall("{([^{}]+?)}", template)
if len(fragment_labels) == 0:
return [template]
fragments = [[{x: y} for y in stanza.get(x)] for x in fragment_labels]
dicts = merge(product(*fragments))
return [template.format(**x) for x in dicts]
def merge(dicts: Iterable) -> List[dict]:
result = list()
for x in dicts:
to_merge = dict()
for item in x:
to_merge = to_merge | item
result.append(to_merge)
return result
def expand_values(stanza: str | dict | listconfig.ListConfig) -> list | range:
if not stanza:
return None
if isinstance(stanza, listconfig.ListConfig):
return stanza
elif match := re.match("^(-?\d+);(-?\d+)(;(\d+))?", str(stanza)):
(start, stop, step) = (
int(match.group(1)),
int(match.group(2)),
int(match.group(4)) or 1,
)
return range(start, stop + step, step)
elif match := re.match("^(-?[\d.]+);(-?[\d.]+)(;([\d.]+))?", str(stanza)):
(start, stop, step) = (
float(match.group(1)),
float(match.group(2)),
float(match.group(4)) or 1.0,
)
return np.arange(start, stop + step, step).tolist()
else:
return [stanza]
def _yaml_to_json(yaml_input: str) -> str:
"""
Converts a yaml string into a json string. Used internally
to generate the example template file.
"""
with io.StringIO(yaml_input) as yaml_in:
data = yaml.safe_load(yaml_in)
return json.dumps(data, indent=2)
HELP = """
This script takes a prompt template file that contains multiple
alternative values for the prompt and its generation arguments (such
as steps). It then expands out the prompts using all combinations of
arguments and either prints them to the terminal's standard output, or
feeds the prompts directly to the invokeai command-line interface.
Call this script again with --instructions (-i) for verbose instructions.
"""
INSTRUCTIONS = f"""
== INTRODUCTION ==
This script takes a prompt template file that contains multiple
alternative values for the prompt and its generation arguments (such
as steps). It then expands out the prompts using all combinations of
arguments and either prints them to the terminal's standard output, or
feeds the prompts directly to the invokeai command-line interface.
If the optional --invoke argument is provided, then the generated
prompts will be fed directly to invokeai for image generation. You
will likely want to add the --outdir option in order to save the image
files to their own folder.
{sys.argv[0]} --invoke --outdir=/tmp/outputs my_template.yaml
If --invoke isn't specified, the expanded prompts will be printed to
output. You can capture them to a file for inspection and editing this
way:
{sys.argv[0]} my_template.yaml > prompts.txt
And then feed them to invokeai this way:
invokeai --outdir=/tmp/outputs < prompts.txt
Note that after invokeai finishes processing the list of prompts, the
output directory will contain a markdown file named `log.md`
containing annotated images. You can open this file using an e-book
reader such as the cross-platform Calibre eBook reader
(https://calibre-ebook.com/).
== FORMAT OF THE TEMPLATES FILE ==
This will generate an example template file that you can get
started with:
{sys.argv[0]} --example > example.yaml
An excerpt from the top of this file looks like this:
model:
- stable-diffusion-1.5
- stable-diffusion-2.1-base
steps: 30;50;1 # start steps at 30 and go up to 50, incrementing by 1 each time
seed: 50 # fixed constant, seed=50
cfg: # list of CFG values to try
- 7
- 8
- 12
prompt: a walk in the park # constant value
In more detail, the template file can one or more of the
following sections:
- model:
- steps:
- seed:
- cfg:
- sampler:
- prompt:
- init_img:
- perlin:
- threshold:
- strength
- Each section can have a constant value such as this:
steps: 50
- Or a range of numeric values in the format:
steps: <start>;<stop>;<step> (note semicolon, not colon!)
- Or a list of values in the format:
- value1
- value2
- value3
The "prompt:" section is special. It can accept a constant value:
prompt: a walk in the woods in the style of donatello
Or it can accept a list of prompts:
prompt:
- a walk in the woods
- a walk on the beach
Or it can accept a templated list of prompts. These allow you to
define a series of phrases, each of which is a list. You then combine
them together into a prompt template in this way:
prompt:
style:
- oil painting
- watercolor
- comic book
- studio photography
subject:
- sunny meadow in the mountains
- gathering storm in the mountains
template: a {{subject}} in the style of {{style}}
In the example above, the phrase names "style" and "subject" are
examples only. You can use whatever you like. However, the "template:"
field is required. The output will be:
"a sunny meadow in the mountains in the style of an oil painting"
"a sunny meadow in the mountains in the style of watercolor masterpiece"
...
"a gathering storm in the mountains in the style of an ink sketch"
== SUPPORT FOR JSON FORMAT ==
For those who prefer the JSON format, this script will accept JSON
template files as well. Please run "{sys.argv[0]} --json-example"
to print out a version of the example template file in json format.
You may save it to disk and use it as a starting point for your own
template this way:
{sys.argv[0]} --json-example > template.json
"""
EXAMPLE_TEMPLATE_FILE = """
model: stable-diffusion-1.5
steps: 30;50;10
seed: 50
dimensions: 512x512
perlin: 0.0
threshold: 0
cfg:
- 7
- 12
sampler:
- k_euler_a
- k_lms
prompt:
style:
- oil painting
- watercolor
location:
- the mountains
- a desert
object:
- luxurious dwelling
- crude tent
template: a {object} in {location}, in the style of {style}
"""
if __name__ == "__main__":
main()