mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
a79d40519c
- `invokeai-batch --invoke` was created a time-stamped logfile with colons in its name, which is a Windows no-no. This corrects the problem by writing the timestamp out as "13-06-2023_8-35-10" - Closes #3005
536 lines
16 KiB
Python
Executable File
536 lines
16 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
"""
|
|
Simple script to generate a file of InvokeAI prompts and settings
|
|
that scan across steps and other parameters.
|
|
"""
|
|
|
|
import argparse
|
|
import io
|
|
import json
|
|
import os
|
|
import pydoc
|
|
import re
|
|
import shutil
|
|
import sys
|
|
import time
|
|
from contextlib import redirect_stderr
|
|
from io import TextIOBase
|
|
from itertools import product
|
|
from multiprocessing import Process
|
|
from multiprocessing.connection import Connection, Pipe
|
|
from pathlib import Path
|
|
from tempfile import gettempdir
|
|
from typing import Callable, Iterable, List
|
|
|
|
import numpy as np
|
|
import yaml
|
|
from omegaconf import OmegaConf, dictconfig, listconfig
|
|
|
|
|
|
def expand_prompts(
|
|
template_file: Path,
|
|
run_invoke: bool = False,
|
|
invoke_model: str = None,
|
|
invoke_outdir: Path = None,
|
|
processes_per_gpu: int = 1,
|
|
):
|
|
"""
|
|
:param template_file: A YAML file containing templated prompts and args
|
|
:param run_invoke: A boolean which if True will pass expanded prompts to invokeai CLI
|
|
:param invoke_model: Name of the model to load when run_invoke is true; otherwise uses default
|
|
:param invoke_outdir: Directory for outputs when run_invoke is true; otherwise uses default
|
|
"""
|
|
if template_file.name.endswith(".json"):
|
|
with open(template_file, "r") as file:
|
|
with io.StringIO(yaml.dump(json.load(file))) as fh:
|
|
conf = OmegaConf.load(fh)
|
|
else:
|
|
conf = OmegaConf.load(template_file)
|
|
|
|
# loading here to avoid long wait for help message
|
|
import torch
|
|
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
gpu_count = torch.cuda.device_count() if torch.cuda.is_available() else 1
|
|
commands = expanded_invokeai_commands(conf, run_invoke)
|
|
children = list()
|
|
|
|
try:
|
|
if run_invoke:
|
|
invokeai_args = [shutil.which("invokeai"), "--from_file", "-"]
|
|
if invoke_model:
|
|
invokeai_args.extend(("--model", invoke_model))
|
|
if invoke_outdir:
|
|
outdir = os.path.expanduser(invoke_outdir)
|
|
invokeai_args.extend(("--outdir", outdir))
|
|
else:
|
|
outdir = gettempdir()
|
|
logdir = Path(outdir, "invokeai-batch-logs")
|
|
|
|
processes_to_launch = gpu_count * processes_per_gpu
|
|
print(
|
|
f">> Spawning {processes_to_launch} invokeai processes across {gpu_count} CUDA gpus",
|
|
file=sys.stderr,
|
|
)
|
|
print(
|
|
f'>> Outputs will be written into {invoke_outdir or "default InvokeAI outputs directory"}, and error logs will be written to {logdir}',
|
|
file=sys.stderr,
|
|
)
|
|
import ldm.invoke.CLI
|
|
|
|
parent_conn, child_conn = Pipe()
|
|
children = set()
|
|
for i in range(processes_to_launch):
|
|
p = Process(
|
|
target=_run_invoke,
|
|
kwargs=dict(
|
|
entry_point=ldm.invoke.CLI.main,
|
|
conn_in=child_conn,
|
|
conn_out=parent_conn,
|
|
args=invokeai_args,
|
|
gpu=i % gpu_count,
|
|
logdir=logdir,
|
|
),
|
|
)
|
|
p.start()
|
|
children.add(p)
|
|
child_conn.close()
|
|
sequence = 0
|
|
for command in commands:
|
|
sequence += 1
|
|
parent_conn.send(
|
|
command + f' --fnformat="dp.{sequence:04}.{{prompt}}.png"'
|
|
)
|
|
parent_conn.close()
|
|
else:
|
|
for command in commands:
|
|
print(command)
|
|
except KeyboardInterrupt:
|
|
for p in children:
|
|
p.terminate()
|
|
|
|
|
|
class MessageToStdin(object):
|
|
def __init__(self, connection: Connection):
|
|
self.connection = connection
|
|
self.linebuffer = list()
|
|
|
|
def readline(self) -> str:
|
|
try:
|
|
if len(self.linebuffer) == 0:
|
|
message = self.connection.recv()
|
|
self.linebuffer = message.split("\n")
|
|
result = self.linebuffer.pop(0)
|
|
return result
|
|
except EOFError:
|
|
return None
|
|
|
|
|
|
class FilterStream(object):
|
|
def __init__(
|
|
self, stream: TextIOBase, include: re.Pattern = None, exclude: re.Pattern = None
|
|
):
|
|
self.stream = stream
|
|
self.include = include
|
|
self.exclude = exclude
|
|
|
|
def write(self, data: str):
|
|
if self.include and self.include.match(data):
|
|
self.stream.write(data)
|
|
self.stream.flush()
|
|
elif self.exclude and not self.exclude.match(data):
|
|
self.stream.write(data)
|
|
self.stream.flush()
|
|
|
|
def flush(self):
|
|
self.stream.flush()
|
|
|
|
|
|
def _run_invoke(
|
|
entry_point: Callable,
|
|
conn_in: Connection,
|
|
conn_out: Connection,
|
|
args: List[str],
|
|
logdir: Path,
|
|
gpu: int = 0,
|
|
):
|
|
pid = os.getpid()
|
|
logdir.mkdir(parents=True, exist_ok=True)
|
|
logfile = Path(logdir, f'{time.strftime("%Y-%m-%d_%H-%M-%S")}-pid={pid}.txt')
|
|
print(
|
|
f">> Process {pid} running on GPU {gpu}; logging to {logfile}", file=sys.stderr
|
|
)
|
|
conn_out.close()
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu}"
|
|
sys.argv = args
|
|
sys.stdin = MessageToStdin(conn_in)
|
|
sys.stdout = FilterStream(sys.stdout, include=re.compile("^\[\d+\]"))
|
|
with open(logfile, "w") as stderr, redirect_stderr(stderr):
|
|
entry_point()
|
|
|
|
|
|
def _filter_output(stream: TextIOBase):
|
|
while line := stream.readline():
|
|
if re.match("^\[\d+\]", line):
|
|
print(line)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description=HELP,
|
|
)
|
|
parser.add_argument(
|
|
"template_file",
|
|
type=Path,
|
|
nargs="?",
|
|
help="path to a template file, use --example to generate an example file",
|
|
)
|
|
parser.add_argument(
|
|
"--example",
|
|
action="store_true",
|
|
default=False,
|
|
help=f'Print an example template file in YAML format. Use "{sys.argv[0]} --example > example.yaml" to save output to a file',
|
|
)
|
|
parser.add_argument(
|
|
"--json-example",
|
|
action="store_true",
|
|
default=False,
|
|
help=f'Print an example template file in json format. Use "{sys.argv[0]} --json-example > example.json" to save output to a file',
|
|
)
|
|
parser.add_argument(
|
|
"--instructions",
|
|
"-i",
|
|
dest="instructions",
|
|
action="store_true",
|
|
default=False,
|
|
help="Print verbose instructions.",
|
|
)
|
|
parser.add_argument(
|
|
"--invoke",
|
|
action="store_true",
|
|
help="Execute invokeai using specified optional --model, --processes_per_gpu and --outdir",
|
|
)
|
|
parser.add_argument(
|
|
"--model",
|
|
help="Feed the generated prompts to the invokeai CLI using the indicated model. Will be overriden by a model: section in template file.",
|
|
)
|
|
parser.add_argument(
|
|
"--outdir", type=Path, help="Write images and log into indicated directory"
|
|
)
|
|
parser.add_argument(
|
|
"--processes_per_gpu",
|
|
type=int,
|
|
default=1,
|
|
help="When executing invokeai, how many parallel processes to execute per CUDA GPU.",
|
|
)
|
|
opt = parser.parse_args()
|
|
|
|
if opt.example:
|
|
print(EXAMPLE_TEMPLATE_FILE)
|
|
sys.exit(0)
|
|
|
|
if opt.json_example:
|
|
print(_yaml_to_json(EXAMPLE_TEMPLATE_FILE))
|
|
sys.exit(0)
|
|
|
|
if opt.instructions:
|
|
pydoc.pager(INSTRUCTIONS)
|
|
sys.exit(0)
|
|
|
|
if not opt.template_file:
|
|
parser.print_help()
|
|
sys.exit(-1)
|
|
|
|
expand_prompts(
|
|
template_file=opt.template_file,
|
|
run_invoke=opt.invoke,
|
|
invoke_model=opt.model,
|
|
invoke_outdir=opt.outdir,
|
|
processes_per_gpu=opt.processes_per_gpu,
|
|
)
|
|
|
|
|
|
def expanded_invokeai_commands(
|
|
conf: OmegaConf, always_switch_models: bool = False
|
|
) -> List[List[str]]:
|
|
models = expand_values(conf.get("model"))
|
|
steps = expand_values(conf.get("steps")) or [30]
|
|
cfgs = expand_values(conf.get("cfg")) or [7.5]
|
|
samplers = expand_values(conf.get("sampler")) or ["ddim"]
|
|
seeds = expand_values(conf.get("seed")) or [0]
|
|
dimensions = expand_values(conf.get("dimensions")) or ["512x512"]
|
|
init_img = expand_values(conf.get("init_img")) or [""]
|
|
perlin = expand_values(conf.get("perlin")) or [0]
|
|
threshold = expand_values(conf.get("threshold")) or [0]
|
|
strength = expand_values(conf.get("strength")) or [0.75]
|
|
prompts = expand_prompt(conf.get("prompt")) or ["banana sushi"]
|
|
|
|
cross_product = product(
|
|
*[
|
|
models,
|
|
seeds,
|
|
prompts,
|
|
samplers,
|
|
cfgs,
|
|
steps,
|
|
perlin,
|
|
threshold,
|
|
init_img,
|
|
strength,
|
|
dimensions,
|
|
]
|
|
)
|
|
previous_model = None
|
|
|
|
result = list()
|
|
for p in cross_product:
|
|
(
|
|
model,
|
|
seed,
|
|
prompt,
|
|
sampler,
|
|
cfg,
|
|
step,
|
|
perlin,
|
|
threshold,
|
|
init_img,
|
|
strength,
|
|
dimensions,
|
|
) = tuple(p)
|
|
(width, height) = dimensions.split("x")
|
|
switch_args = (
|
|
f"!switch {model}\n"
|
|
if always_switch_models or previous_model != model
|
|
else ""
|
|
)
|
|
image_args = f"-I{init_img} -f{strength}" if init_img else ""
|
|
command = f"{switch_args}{prompt} -S{seed} -A{sampler} -C{cfg} -s{step} {image_args} --perlin={perlin} --threshold={threshold} -W{width} -H{height}"
|
|
result.append(command)
|
|
previous_model = model
|
|
return result
|
|
|
|
|
|
def expand_prompt(
|
|
stanza: str | dict | listconfig.ListConfig | dictconfig.DictConfig,
|
|
) -> list | range:
|
|
if not stanza:
|
|
return None
|
|
if isinstance(stanza, listconfig.ListConfig):
|
|
return stanza
|
|
if isinstance(stanza, str):
|
|
return [stanza]
|
|
if not isinstance(stanza, dictconfig.DictConfig):
|
|
raise ValueError(f"Unrecognized template: {stanza}")
|
|
|
|
if not (template := stanza.get("template")):
|
|
raise KeyError('"prompt" section must contain a "template" definition')
|
|
|
|
fragment_labels = re.findall("{([^{}]+?)}", template)
|
|
if len(fragment_labels) == 0:
|
|
return [template]
|
|
fragments = [[{x: y} for y in stanza.get(x)] for x in fragment_labels]
|
|
dicts = merge(product(*fragments))
|
|
return [template.format(**x) for x in dicts]
|
|
|
|
|
|
def merge(dicts: Iterable) -> List[dict]:
|
|
result = list()
|
|
for x in dicts:
|
|
to_merge = dict()
|
|
for item in x:
|
|
to_merge = to_merge | item
|
|
result.append(to_merge)
|
|
return result
|
|
|
|
|
|
def expand_values(stanza: str | dict | listconfig.ListConfig) -> list | range:
|
|
if not stanza:
|
|
return None
|
|
if isinstance(stanza, listconfig.ListConfig):
|
|
return stanza
|
|
elif match := re.match("^(-?\d+);(-?\d+)(;(\d+))?", str(stanza)):
|
|
(start, stop, step) = (
|
|
int(match.group(1)),
|
|
int(match.group(2)),
|
|
int(match.group(4)) or 1,
|
|
)
|
|
return range(start, stop + step, step)
|
|
elif match := re.match("^(-?[\d.]+);(-?[\d.]+)(;([\d.]+))?", str(stanza)):
|
|
(start, stop, step) = (
|
|
float(match.group(1)),
|
|
float(match.group(2)),
|
|
float(match.group(4)) or 1.0,
|
|
)
|
|
return np.arange(start, stop + step, step).tolist()
|
|
else:
|
|
return [stanza]
|
|
|
|
|
|
def _yaml_to_json(yaml_input: str) -> str:
|
|
"""
|
|
Converts a yaml string into a json string. Used internally
|
|
to generate the example template file.
|
|
"""
|
|
with io.StringIO(yaml_input) as yaml_in:
|
|
data = yaml.safe_load(yaml_in)
|
|
return json.dumps(data, indent=2)
|
|
|
|
|
|
HELP = """
|
|
This script takes a prompt template file that contains multiple
|
|
alternative values for the prompt and its generation arguments (such
|
|
as steps). It then expands out the prompts using all combinations of
|
|
arguments and either prints them to the terminal's standard output, or
|
|
feeds the prompts directly to the invokeai command-line interface.
|
|
|
|
Call this script again with --instructions (-i) for verbose instructions.
|
|
"""
|
|
|
|
INSTRUCTIONS = f"""
|
|
== INTRODUCTION ==
|
|
This script takes a prompt template file that contains multiple
|
|
alternative values for the prompt and its generation arguments (such
|
|
as steps). It then expands out the prompts using all combinations of
|
|
arguments and either prints them to the terminal's standard output, or
|
|
feeds the prompts directly to the invokeai command-line interface.
|
|
|
|
If the optional --invoke argument is provided, then the generated
|
|
prompts will be fed directly to invokeai for image generation. You
|
|
will likely want to add the --outdir option in order to save the image
|
|
files to their own folder.
|
|
|
|
{sys.argv[0]} --invoke --outdir=/tmp/outputs my_template.yaml
|
|
|
|
If --invoke isn't specified, the expanded prompts will be printed to
|
|
output. You can capture them to a file for inspection and editing this
|
|
way:
|
|
|
|
{sys.argv[0]} my_template.yaml > prompts.txt
|
|
|
|
And then feed them to invokeai this way:
|
|
|
|
invokeai --outdir=/tmp/outputs < prompts.txt
|
|
|
|
Note that after invokeai finishes processing the list of prompts, the
|
|
output directory will contain a markdown file named `log.md`
|
|
containing annotated images. You can open this file using an e-book
|
|
reader such as the cross-platform Calibre eBook reader
|
|
(https://calibre-ebook.com/).
|
|
|
|
== FORMAT OF THE TEMPLATES FILE ==
|
|
|
|
This will generate an example template file that you can get
|
|
started with:
|
|
|
|
{sys.argv[0]} --example > example.yaml
|
|
|
|
An excerpt from the top of this file looks like this:
|
|
|
|
model:
|
|
- stable-diffusion-1.5
|
|
- stable-diffusion-2.1-base
|
|
steps: 30;50;1 # start steps at 30 and go up to 50, incrementing by 1 each time
|
|
seed: 50 # fixed constant, seed=50
|
|
cfg: # list of CFG values to try
|
|
- 7
|
|
- 8
|
|
- 12
|
|
prompt: a walk in the park # constant value
|
|
|
|
In more detail, the template file can one or more of the
|
|
following sections:
|
|
- model:
|
|
- steps:
|
|
- seed:
|
|
- cfg:
|
|
- sampler:
|
|
- prompt:
|
|
- init_img:
|
|
- perlin:
|
|
- threshold:
|
|
- strength
|
|
|
|
- Each section can have a constant value such as this:
|
|
steps: 50
|
|
- Or a range of numeric values in the format:
|
|
steps: <start>;<stop>;<step> (note semicolon, not colon!)
|
|
- Or a list of values in the format:
|
|
- value1
|
|
- value2
|
|
- value3
|
|
|
|
The "prompt:" section is special. It can accept a constant value:
|
|
|
|
prompt: a walk in the woods in the style of donatello
|
|
|
|
Or it can accept a list of prompts:
|
|
|
|
prompt:
|
|
- a walk in the woods
|
|
- a walk on the beach
|
|
|
|
Or it can accept a templated list of prompts. These allow you to
|
|
define a series of phrases, each of which is a list. You then combine
|
|
them together into a prompt template in this way:
|
|
|
|
prompt:
|
|
style:
|
|
- oil painting
|
|
- watercolor
|
|
- comic book
|
|
- studio photography
|
|
subject:
|
|
- sunny meadow in the mountains
|
|
- gathering storm in the mountains
|
|
template: a {{subject}} in the style of {{style}}
|
|
|
|
In the example above, the phrase names "style" and "subject" are
|
|
examples only. You can use whatever you like. However, the "template:"
|
|
field is required. The output will be:
|
|
|
|
"a sunny meadow in the mountains in the style of an oil painting"
|
|
"a sunny meadow in the mountains in the style of watercolor masterpiece"
|
|
...
|
|
"a gathering storm in the mountains in the style of an ink sketch"
|
|
|
|
== SUPPORT FOR JSON FORMAT ==
|
|
|
|
For those who prefer the JSON format, this script will accept JSON
|
|
template files as well. Please run "{sys.argv[0]} --json-example"
|
|
to print out a version of the example template file in json format.
|
|
You may save it to disk and use it as a starting point for your own
|
|
template this way:
|
|
|
|
{sys.argv[0]} --json-example > template.json
|
|
"""
|
|
|
|
EXAMPLE_TEMPLATE_FILE = """
|
|
model: stable-diffusion-1.5
|
|
steps: 30;50;10
|
|
seed: 50
|
|
dimensions: 512x512
|
|
perlin: 0.0
|
|
threshold: 0
|
|
cfg:
|
|
- 7
|
|
- 12
|
|
sampler:
|
|
- k_euler_a
|
|
- k_lms
|
|
prompt:
|
|
style:
|
|
- oil painting
|
|
- watercolor
|
|
location:
|
|
- the mountains
|
|
- a desert
|
|
object:
|
|
- luxurious dwelling
|
|
- crude tent
|
|
template: a {object} in {location}, in the style of {style}
|
|
"""
|
|
|
|
if __name__ == "__main__":
|
|
main()
|