InvokeAI/ldm/invoke/training/textual_inversion.py
Lincoln Stein 4515d52a42 fix textual inversion documentation and code
This PR addresses issues raised by #3008.

1. Update documentation to indicate the correct maximum batch size for
   TI training when xformers is and isn't used.

2. Update textual inversion code so that the default for batch size
   is aware of xformer availability.

3. Add documentation for how to launch TI with distributed learning.
2023-03-23 21:00:54 -04:00

462 lines
15 KiB
Python
Executable File

#!/usr/bin/env python
"""
This is the frontend to "textual_inversion_training.py".
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
"""
import os
import re
import shutil
import sys
import traceback
from argparse import Namespace
from pathlib import Path
from typing import List, Tuple
import npyscreen
from diffusers.utils.import_utils import is_xformers_available
from npyscreen import widget
from omegaconf import OmegaConf
from ldm.invoke.globals import Globals, global_set_root
from ldm.invoke.training.textual_inversion_training import (
do_textual_inversion_training,
parse_args,
)
TRAINING_DATA = "text-inversion-training-data"
TRAINING_DIR = "text-inversion-output"
CONF_FILE = "preferences.conf"
XFORMERS_AVAILABLE = is_xformers_available()
class textualInversionForm(npyscreen.FormMultiPageAction):
resolutions = [512, 768, 1024]
lr_schedulers = [
"linear",
"cosine",
"cosine_with_restarts",
"polynomial",
"constant",
"constant_with_warmup",
]
precisions = ["no", "fp16", "bf16"]
learnable_properties = ["object", "style"]
def __init__(self, parentApp, name, saved_args=None):
self.saved_args = saved_args or {}
super().__init__(parentApp, name)
def afterEditing(self):
self.parentApp.setNextForm(None)
def create(self):
self.model_names, default = self.get_model_names()
default_initializer_token = ""
default_placeholder_token = ""
saved_args = self.saved_args
try:
default = self.model_names.index(saved_args["model"])
except:
pass
self.add_widget_intelligent(
npyscreen.FixedText,
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields, cursor arrows to make a selection, and space to toggle checkboxes.",
editable=False,
)
self.model = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Model Name:",
values=self.model_names,
value=default,
max_height=len(self.model_names) + 1,
scroll_exit=True,
)
self.placeholder_token = self.add_widget_intelligent(
npyscreen.TitleText,
name="Trigger Term:",
value="", # saved_args.get('placeholder_token',''), # to restore previous term
scroll_exit=True,
)
self.placeholder_token.when_value_edited = self.initializer_changed
self.nextrely -= 1
self.nextrelx += 30
self.prompt_token = self.add_widget_intelligent(
npyscreen.FixedText,
name="Trigger term for use in prompt",
value="",
editable=False,
scroll_exit=True,
)
self.nextrelx -= 30
self.initializer_token = self.add_widget_intelligent(
npyscreen.TitleText,
name="Initializer:",
value=saved_args.get("initializer_token", default_initializer_token),
scroll_exit=True,
)
self.resume_from_checkpoint = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Resume from last saved checkpoint",
value=False,
scroll_exit=True,
)
self.learnable_property = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Learnable property:",
values=self.learnable_properties,
value=self.learnable_properties.index(
saved_args.get("learnable_property", "object")
),
max_height=4,
scroll_exit=True,
)
self.train_data_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="Data Training Directory:",
select_dir=True,
must_exist=False,
value=str(
saved_args.get(
"train_data_dir",
Path(Globals.root) / TRAINING_DATA / default_placeholder_token,
)
),
scroll_exit=True,
)
self.output_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="Output Destination Directory:",
select_dir=True,
must_exist=False,
value=str(
saved_args.get(
"output_dir",
Path(Globals.root) / TRAINING_DIR / default_placeholder_token,
)
),
scroll_exit=True,
)
self.resolution = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Image resolution (pixels):",
values=self.resolutions,
value=self.resolutions.index(saved_args.get("resolution", 512)),
max_height=4,
scroll_exit=True,
)
self.center_crop = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Center crop images before resizing to resolution",
value=saved_args.get("center_crop", False),
scroll_exit=True,
)
self.mixed_precision = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Mixed Precision:",
values=self.precisions,
value=self.precisions.index(saved_args.get("mixed_precision", "fp16")),
max_height=4,
scroll_exit=True,
)
self.num_train_epochs = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Number of training epochs:",
out_of=1000,
step=50,
lowest=1,
value=saved_args.get("num_train_epochs", 100),
scroll_exit=True,
)
self.max_train_steps = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Max Training Steps:",
out_of=10000,
step=500,
lowest=1,
value=saved_args.get("max_train_steps", 2500),
scroll_exit=True,
)
self.train_batch_size = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Batch Size (reduce if you run out of memory):",
out_of=50,
step=1,
lowest=1,
value=saved_args.get("train_batch_size", 8 if XFORMERS_AVAILABLE else 3),
scroll_exit=True,
)
self.gradient_accumulation_steps = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Gradient Accumulation Steps (may need to decrease this to resume from a checkpoint):",
out_of=10,
step=1,
lowest=1,
value=saved_args.get("gradient_accumulation_steps", 4),
scroll_exit=True,
)
self.lr_warmup_steps = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Warmup Steps:",
out_of=100,
step=1,
lowest=0,
value=saved_args.get("lr_warmup_steps", 0),
scroll_exit=True,
)
self.learning_rate = self.add_widget_intelligent(
npyscreen.TitleText,
name="Learning Rate:",
value=str(
saved_args.get("learning_rate", "5.0e-04"),
),
scroll_exit=True,
)
self.scale_lr = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Scale learning rate by number GPUs, steps and batch size",
value=saved_args.get("scale_lr", True),
scroll_exit=True,
)
self.enable_xformers_memory_efficient_attention = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Use xformers acceleration",
value=saved_args.get("enable_xformers_memory_efficient_attention", XFORMERS_AVAILABLE),
scroll_exit=True,
)
self.lr_scheduler = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Learning rate scheduler:",
values=self.lr_schedulers,
max_height=7,
value=self.lr_schedulers.index(saved_args.get("lr_scheduler", "constant")),
scroll_exit=True,
)
self.model.editing = True
def initializer_changed(self):
placeholder = self.placeholder_token.value
self.prompt_token.value = f"(Trigger by using <{placeholder}> in your prompts)"
self.train_data_dir.value = str(
Path(Globals.root) / TRAINING_DATA / placeholder
)
self.output_dir.value = str(Path(Globals.root) / TRAINING_DIR / placeholder)
self.resume_from_checkpoint.value = Path(self.output_dir.value).exists()
def on_ok(self):
if self.validate_field_values():
self.parentApp.setNextForm(None)
self.editing = False
self.parentApp.ti_arguments = self.marshall_arguments()
npyscreen.notify(
"Launching textual inversion training. This will take a while..."
)
else:
self.editing = True
def ok_cancel(self):
sys.exit(0)
def validate_field_values(self) -> bool:
bad_fields = []
if self.model.value is None:
bad_fields.append(
"Model Name must correspond to a known model in models.yaml"
)
if not re.match("^[a-zA-Z0-9.-]+$", self.placeholder_token.value):
bad_fields.append(
"Trigger term must only contain alphanumeric characters, the dot and hyphen"
)
if self.train_data_dir.value is None:
bad_fields.append("Data Training Directory cannot be empty")
if self.output_dir.value is None:
bad_fields.append("The Output Destination Directory cannot be empty")
if len(bad_fields) > 0:
message = "The following problems were detected and must be corrected:"
for problem in bad_fields:
message += f"\n* {problem}"
npyscreen.notify_confirm(message)
return False
else:
return True
def get_model_names(self) -> Tuple[List[str], int]:
conf = OmegaConf.load(os.path.join(Globals.root, "configs/models.yaml"))
model_names = [
idx
for idx in sorted(list(conf.keys()))
if conf[idx].get("format", None) == "diffusers"
]
defaults = [
idx
for idx in range(len(model_names))
if "default" in conf[model_names[idx]]
]
default = defaults[0] if len(defaults) > 0 else 0
return (model_names, default)
def marshall_arguments(self) -> dict:
args = dict()
# the choices
args.update(
model=self.model_names[self.model.value[0]],
resolution=self.resolutions[self.resolution.value[0]],
lr_scheduler=self.lr_schedulers[self.lr_scheduler.value[0]],
mixed_precision=self.precisions[self.mixed_precision.value[0]],
learnable_property=self.learnable_properties[
self.learnable_property.value[0]
],
)
# all the strings and booleans
for attr in (
"initializer_token",
"placeholder_token",
"train_data_dir",
"output_dir",
"scale_lr",
"center_crop",
"enable_xformers_memory_efficient_attention",
):
args[attr] = getattr(self, attr).value
# all the integers
for attr in (
"train_batch_size",
"gradient_accumulation_steps",
"num_train_epochs",
"max_train_steps",
"lr_warmup_steps",
):
args[attr] = int(getattr(self, attr).value)
# the floats (just one)
args.update(learning_rate=float(self.learning_rate.value))
# a special case
if self.resume_from_checkpoint.value and Path(self.output_dir.value).exists():
args["resume_from_checkpoint"] = "latest"
return args
class MyApplication(npyscreen.NPSAppManaged):
def __init__(self, saved_args=None):
super().__init__()
self.ti_arguments = None
self.saved_args = saved_args
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.main = self.addForm(
"MAIN",
textualInversionForm,
name="Textual Inversion Settings",
saved_args=self.saved_args,
)
def copy_to_embeddings_folder(args: dict):
"""
Copy learned_embeds.bin into the embeddings folder, and offer to
delete the full model and checkpoints.
"""
source = Path(args["output_dir"], "learned_embeds.bin")
dest_dir_name = args["placeholder_token"].strip("<>")
destination = Path(Globals.root, "embeddings", dest_dir_name)
os.makedirs(destination, exist_ok=True)
print(f">> Training completed. Copying learned_embeds.bin into {str(destination)}")
shutil.copy(source, destination)
if (
input("Delete training logs and intermediate checkpoints? [y] ") or "y"
).startswith(("y", "Y")):
shutil.rmtree(Path(args["output_dir"]))
else:
print(f'>> Keeping {args["output_dir"]}')
def save_args(args: dict):
"""
Save the current argument values to an omegaconf file
"""
dest_dir = Path(Globals.root) / TRAINING_DIR
os.makedirs(dest_dir, exist_ok=True)
conf_file = dest_dir / CONF_FILE
conf = OmegaConf.create(args)
OmegaConf.save(config=conf, f=conf_file)
def previous_args() -> dict:
"""
Get the previous arguments used.
"""
conf_file = Path(Globals.root) / TRAINING_DIR / CONF_FILE
try:
conf = OmegaConf.load(conf_file)
conf["placeholder_token"] = conf["placeholder_token"].strip("<>")
except:
conf = None
return conf
def do_front_end(args: Namespace):
saved_args = previous_args()
myapplication = MyApplication(saved_args=saved_args)
myapplication.run()
if args := myapplication.ti_arguments:
os.makedirs(args["output_dir"], exist_ok=True)
# Automatically add angle brackets around the trigger
if not re.match("^<.+>$", args["placeholder_token"]):
args["placeholder_token"] = f"<{args['placeholder_token']}>"
args["only_save_embeds"] = True
save_args(args)
try:
do_textual_inversion_training(**args)
copy_to_embeddings_folder(args)
except Exception as e:
print("** An exception occurred during training. The exception was:")
print(str(e))
print("** DETAILS:")
print(traceback.format_exc())
def main():
args = parse_args()
global_set_root(args.root_dir or Globals.root)
try:
if args.front_end:
do_front_end(args)
else:
do_textual_inversion_training(**vars(args))
except AssertionError as e:
print(str(e))
sys.exit(-1)
except KeyboardInterrupt:
pass
except (widget.NotEnoughSpaceForWidget, Exception) as e:
if str(e).startswith("Height of 1 allocated"):
print(
"** You need to have at least one diffusers models defined in models.yaml in order to train"
)
elif str(e).startswith('addwstr'):
print(
'** Not enough window space for the interface. Please make your window larger and try again.'
)
else:
print(f"** An error has occurred: {str(e)}")
sys.exit(-1)
if __name__ == "__main__":
main()