InvokeAI/invokeai/app/invocations/image.py
psychedelicious b7938d9ca9
feat: queued generation (#4502)
* fix(config): fix typing issues in `config/`

`config/invokeai_config.py`:
- use `Optional` for things that are optional
- fix typing of `ram_cache_size()` and `vram_cache_size()`
- remove unused and incorrectly typed method `autoconvert_path`
- fix types and logic for `parse_args()`, in which `InvokeAIAppConfig.initconf` *must* be a `DictConfig`, but function would allow it to be set as a `ListConfig`, which presumably would cause issues elsewhere

`config/base.py`:
- use `cls` for first arg of class methods
- use `Optional` for things that are optional
- fix minor type issue related to setting of `env_prefix`
- remove unused `add_subparser()` method, which calls `add_parser()` on an `ArgumentParser` (method only available on the `_SubParsersAction` object, which is returned from ArgumentParser.add_subparsers()`)

* feat: queued generation and batches

Due to a very messy branch with broad addition of `isort` on `main` alongside it, some git surgery was needed to get an agreeable git history. This commit represents all of the work on queued generation. See PR for notes.

* chore: flake8, isort, black

* fix(nodes): fix incorrect service stop() method

* fix(nodes): improve names of a few variables

* fix(tests): fix up tests after changes to batches/queue

* feat(tests): add unit tests for session queue helper functions

* feat(ui): dynamic prompts is always enabled

* feat(queue): add queue_status_changed event

* feat(ui): wip queue graphs

* feat(nodes): move cleanup til after invoker startup

* feat(nodes): add cancel_by_batch_ids

* feat(ui): wip batch graphs & UI

* fix(nodes): remove `Batch.batch_id` from required

* fix(ui): cleanup and use fixedCacheKey for all mutations

* fix(ui): remove orphaned nodes from canvas graphs

* fix(nodes): fix cancel_by_batch_ids result count

* fix(ui): only show cancel batch tooltip when batches were canceled

* chore: isort

* fix(api): return `[""]` when dynamic prompts generates no prompts

Just a simple fallback so we always have a prompt.

* feat(ui): dynamicPrompts.combinatorial is always on

There seems to be little purpose in using the combinatorial generation for dynamic prompts. I've disabled it by hiding it from the UI and defaulting combinatorial to true. If we want to enable it again in the future it's straightforward to do so.

* feat: add queue_id & support logic

* feat(ui): fix upscale button

It prepends the upscale operation to queue

* feat(nodes): return queue item when enqueuing a single graph

This facilitates one-off graph async workflows in the client.

* feat(ui): move controlnet autoprocess to queue

* fix(ui): fix non-serializable DOMRect in redux state

* feat(ui): QueueTable performance tweaks

* feat(ui): update queue list

Queue items expand to show the full queue item. Just as JSON for now.

* wip threaded session_processor

* feat(nodes,ui): fully migrate queue to session_processor

* feat(nodes,ui): add processor events

* feat(ui): ui tweaks

* feat(nodes,ui): consolidate events, reduce network requests

* feat(ui): cleanup & abstract queue hooks

* feat(nodes): optimize batch permutation

Use a generator to do only as much work as is needed.

Previously, though we only ended up creating exactly as many queue items as was needed, there was still some intermediary work that calculated *all* permutations. When that number was very high, the system had a very hard time and used a lot of memory.

The logic has been refactored to use a generator. Additionally, the batch validators are optimized to return early and use less memory.

* feat(ui): add seed behaviour parameter

This dynamic prompts parameter allows the seed to be randomized per prompt or per iteration:
- Per iteration: Use the same seed for all prompts in a single dynamic prompt expansion
- Per prompt: Use a different seed for every single prompt

"Per iteration" is appropriate for exploring a the latents space with a stable starting noise, while "Per prompt" provides more variation.

* fix(ui): remove extraneous random seed nodes from linear graphs

* fix(ui): fix controlnet autoprocess not working when queue is running

* feat(queue): add timestamps to queue status updates

Also show execution time in queue list

* feat(queue): change all execution-related events to use the `queue_id` as the room, also include `queue_item_id` in InvocationQueueItem

This allows for much simpler handling of queue items.

* feat(api): deprecate sessions router

* chore(backend): tidy logging in `dependencies.py`

* fix(backend): respect `use_memory_db`

* feat(backend): add `config.log_sql` (enables sql trace logging)

* feat: add invocation cache

Supersedes #4574

The invocation cache provides simple node memoization functionality. Nodes that use the cache are memoized and not re-executed if their inputs haven't changed. Instead, the stored output is returned.

## Results

This feature provides anywhere some significant to massive performance improvement.

The improvement is most marked on large batches of generations where you only change a couple things (e.g. different seed or prompt for each iteration) and low-VRAM systems, where skipping an extraneous model load is a big deal.

## Overview

A new `invocation_cache` service is added to handle the caching. There's not much to it.

All nodes now inherit a boolean `use_cache` field from `BaseInvocation`. This is a node field and not a class attribute, because specific instances of nodes may want to opt in or out of caching.

The recently-added `invoke_internal()` method on `BaseInvocation` is used as an entrypoint for the cache logic.

To create a cache key, the invocation is first serialized using pydantic's provided `json()` method, skipping the unique `id` field. Then python's very fast builtin `hash()` is used to create an integer key. All implementations of `InvocationCacheBase` must provide a class method `create_key()` which accepts an invocation and outputs a string or integer key.

## In-Memory Implementation

An in-memory implementation is provided. In this implementation, the node outputs are stored in memory as python classes. The in-memory cache does not persist application restarts.

Max node cache size is added as `node_cache_size` under the `Generation` config category.

It defaults to 512 - this number is up for discussion, but given that these are relatively lightweight pydantic models, I think it's safe to up this even higher.

Note that the cache isn't storing the big stuff - tensors and images are store on disk, and outputs include only references to them.

## Node Definition

The default for all nodes is to use the cache. The `@invocation` decorator now accepts an optional `use_cache: bool` argument to override the default of `True`.

Non-deterministic nodes, however, should set this to `False`. Currently, all random-stuff nodes, including `dynamic_prompt`, are set to `False`.

The field name `use_cache` is now effectively a reserved field name and possibly a breaking change if any community nodes use this as a field name. In hindsight, all our reserved field names should have been prefixed with underscores or something.

## One Gotcha

Leaf nodes probably want to opt out of the cache, because if they are not cached, their outputs are not saved again.

If you run the same graph multiple times, you only end up with a single image output, because the image storage side-effects are in the `invoke()` method, which is bypassed if we have a cache hit.

## Linear UI

The linear graphs _almost_ just work, but due to the gotcha, we need to be careful about the final image-outputting node. To resolve this, a `SaveImageInvocation` node is added and used in the linear graphs.

This node is similar to `ImagePrimitive`, except it saves a copy of its input image, and has `use_cache` set to `False` by default.

This is now the leaf node in all linear graphs, and is the only node in those graphs with `use_cache == False` _and_ the only node with `is_intermedate == False`.

## Workflow Editor

All nodes now have a footer with a new `Use Cache [ ]` checkbox. It defaults to the value set by the invocation in its python definition, but can be changed by the user.

The workflow/node validation logic has been updated to migrate old workflows to use the new default values for `use_cache`. Users may still want to review the settings that have been chosen. In the event of catastrophic failure when running this migration, the default value of `True` is applied, as this is correct for most nodes.

Users should consider saving their workflows after loading them in and having them updated.

## Future Enhancements - Callback

A future enhancement would be to provide a callback to the `use_cache` flag that would be run as the node is executed to determine, based on its own internal state, if the cache should be used or not.

This would be useful for `DynamicPromptInvocation`, where the deterministic behaviour is determined by the `combinatorial: bool` field.

## Future Enhancements - Persisted Cache

Similar to how the latents storage is backed by disk, the invocation cache could be persisted to the database or disk. We'd need to be very careful about deserializing outputs, but it's perhaps worth exploring in the future.

* fix(ui): fix queue list item width

* feat(nodes): do not send the whole node on every generator progress

* feat(ui): strip out old logic related to sessions

Things like `isProcessing` are no longer relevant with queue. Removed them all & updated everything be appropriate for queue. May be a few little quirks I've missed...

* feat(ui): fix up param collapse labels

* feat(ui): click queue count to go to queue tab

* tidy(queue): update comment, query format

* feat(ui): fix progress bar when canceling

* fix(ui): fix circular dependency

* feat(nodes): bail on node caching logic if `node_cache_size == 0`

* feat(nodes): handle KeyError on node cache pop

* feat(nodes): bypass cache codepath if caches is disabled

more better no do thing

* fix(ui): reset api cache on connect/disconnect

* feat(ui): prevent enqueue when no prompts generated

* feat(ui): add queue controls to workflow editor

* feat(ui): update floating buttons & other incidental UI tweaks

* fix(ui): fix missing/incorrect translation keys

* fix(tests): add config service to mock invocation services

invoking needs access to `node_cache_size` to occur

* optionally remove pause/resume buttons from queue UI

* option to disable prepending

* chore(ui): remove unused file

* feat(queue): remove `order_id` entirely, `item_id` is now an autoinc pk

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-09-20 15:09:24 +10:00

1007 lines
38 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from pathlib import Path
from typing import Literal, Optional
import cv2
import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0")
class ShowImageInvocation(BaseInvocation):
"""Displays a provided image using the OS image viewer, and passes it forward in the pipeline."""
image: ImageField = InputField(description="The image to show")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
if image:
image.show()
# TODO: how to handle failure?
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
@invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.0.0")
class BlankImageInvocation(BaseInvocation):
"""Creates a blank image and forwards it to the pipeline"""
width: int = InputField(default=512, description="The width of the image")
height: int = InputField(default=512, description="The height of the image")
mode: Literal["RGB", "RGBA"] = InputField(default="RGB", description="The mode of the image")
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=255), description="The color of the image")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = Image.new(mode=self.mode, size=(self.width, self.height), color=self.color.tuple())
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.0.0")
class ImageCropInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image."""
image: ImageField = InputField(description="The image to crop")
x: int = InputField(default=0, description="The left x coordinate of the crop rectangle")
y: int = InputField(default=0, description="The top y coordinate of the crop rectangle")
width: int = InputField(default=512, gt=0, description="The width of the crop rectangle")
height: int = InputField(default=512, gt=0, description="The height of the crop rectangle")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_crop = Image.new(mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0))
image_crop.paste(image, (-self.x, -self.y))
image_dto = context.services.images.create(
image=image_crop,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.0.1")
class ImagePasteInvocation(BaseInvocation):
"""Pastes an image into another image."""
base_image: ImageField = InputField(description="The base image")
image: ImageField = InputField(description="The image to paste")
mask: Optional[ImageField] = InputField(
default=None,
description="The mask to use when pasting",
)
x: int = InputField(default=0, description="The left x coordinate at which to paste the image")
y: int = InputField(default=0, description="The top y coordinate at which to paste the image")
crop: bool = InputField(default=False, description="Crop to base image dimensions")
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get_pil_image(self.base_image.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
mask = None
if self.mask is not None:
mask = context.services.images.get_pil_image(self.mask.image_name)
mask = ImageOps.invert(mask.convert("L"))
# TODO: probably shouldn't invert mask here... should user be required to do it?
min_x = min(0, self.x)
min_y = min(0, self.y)
max_x = max(base_image.width, image.width + self.x)
max_y = max(base_image.height, image.height + self.y)
new_image = Image.new(mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0))
new_image.paste(base_image, (abs(min_x), abs(min_y)))
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
if self.crop:
base_w, base_h = base_image.size
new_image = new_image.crop((abs(min_x), abs(min_y), abs(min_x) + base_w, abs(min_y) + base_h))
image_dto = context.services.images.create(
image=new_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.0.0")
class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask."""
image: ImageField = InputField(description="The image to create the mask from")
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_mask = image.split()[-1]
if self.invert:
image_mask = ImageOps.invert(image_mask)
image_dto = context.services.images.create(
image=image_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.0.0")
class ImageMultiplyInvocation(BaseInvocation):
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
image1: ImageField = InputField(description="The first image to multiply")
image2: ImageField = InputField(description="The second image to multiply")
def invoke(self, context: InvocationContext) -> ImageOutput:
image1 = context.services.images.get_pil_image(self.image1.image_name)
image2 = context.services.images.get_pil_image(self.image2.image_name)
multiply_image = ImageChops.multiply(image1, image2)
image_dto = context.services.images.create(
image=multiply_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.0.0")
class ImageChannelInvocation(BaseInvocation):
"""Gets a channel from an image."""
image: ImageField = InputField(description="The image to get the channel from")
channel: IMAGE_CHANNELS = InputField(default="A", description="The channel to get")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
channel_image = image.getchannel(self.channel)
image_dto = context.services.images.create(
image=channel_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.0.0")
class ImageConvertInvocation(BaseInvocation):
"""Converts an image to a different mode."""
image: ImageField = InputField(description="The image to convert")
mode: IMAGE_MODES = InputField(default="L", description="The mode to convert to")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
converted_image = image.convert(self.mode)
image_dto = context.services.images.create(
image=converted_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.0.0")
class ImageBlurInvocation(BaseInvocation):
"""Blurs an image"""
image: ImageField = InputField(description="The image to blur")
radius: float = InputField(default=8.0, ge=0, description="The blur radius")
# Metadata
blur_type: Literal["gaussian", "box"] = InputField(default="gaussian", description="The type of blur")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
blur = (
ImageFilter.GaussianBlur(self.radius) if self.blur_type == "gaussian" else ImageFilter.BoxBlur(self.radius)
)
blur_image = image.filter(blur)
image_dto = context.services.images.create(
image=blur_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
PIL_RESAMPLING_MODES = Literal[
"nearest",
"box",
"bilinear",
"hamming",
"bicubic",
"lanczos",
]
PIL_RESAMPLING_MAP = {
"nearest": Image.Resampling.NEAREST,
"box": Image.Resampling.BOX,
"bilinear": Image.Resampling.BILINEAR,
"hamming": Image.Resampling.HAMMING,
"bicubic": Image.Resampling.BICUBIC,
"lanczos": Image.Resampling.LANCZOS,
}
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.0.0")
class ImageResizeInvocation(BaseInvocation):
"""Resizes an image to specific dimensions"""
image: ImageField = InputField(description="The image to resize")
width: int = InputField(default=512, gt=0, description="The width to resize to (px)")
height: int = InputField(default=512, gt=0, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
resize_image = image.resize(
(self.width, self.height),
resample=resample_mode,
)
image_dto = context.services.images.create(
image=resize_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.0.0")
class ImageScaleInvocation(BaseInvocation):
"""Scales an image by a factor"""
image: ImageField = InputField(description="The image to scale")
scale_factor: float = InputField(
default=2.0,
gt=0,
description="The factor by which to scale the image",
)
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
width = int(image.width * self.scale_factor)
height = int(image.height * self.scale_factor)
resize_image = image.resize(
(width, height),
resample=resample_mode,
)
image_dto = context.services.images.create(
image=resize_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.0.0")
class ImageLerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image"""
image: ImageField = InputField(description="The image to lerp")
min: int = InputField(default=0, ge=0, le=255, description="The minimum output value")
max: int = InputField(default=255, ge=0, le=255, description="The maximum output value")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
image_arr = image_arr * (self.max - self.min) + self.min
lerp_image = Image.fromarray(numpy.uint8(image_arr))
image_dto = context.services.images.create(
image=lerp_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.0.0")
class ImageInverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image"""
image: ImageField = InputField(description="The image to lerp")
min: int = InputField(default=0, ge=0, le=255, description="The minimum input value")
max: int = InputField(default=255, ge=0, le=255, description="The maximum input value")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
image_dto = context.services.images.create(
image=ilerp_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.0.0")
class ImageNSFWBlurInvocation(BaseInvocation):
"""Add blur to NSFW-flagged images"""
image: ImageField = InputField(description="The image to check")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
logger = context.services.logger
logger.debug("Running NSFW checker")
if SafetyChecker.has_nsfw_concept(image):
logger.info("A potentially NSFW image has been detected. Image will be blurred.")
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = self._get_caution_img()
blurry_image.paste(caution, (0, 0), caution)
image = blurry_image
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
def _get_caution_img(self) -> Image:
import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
return caution.resize((caution.width // 2, caution.height // 2))
@invocation(
"img_watermark", title="Add Invisible Watermark", tags=["image", "watermark"], category="image", version="1.0.0"
)
class ImageWatermarkInvocation(BaseInvocation):
"""Add an invisible watermark to an image"""
image: ImageField = InputField(description="The image to check")
text: str = InputField(default="InvokeAI", description="Watermark text")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
new_image = InvisibleWatermark.add_watermark(image, self.text)
image_dto = context.services.images.create(
image=new_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.0.0")
class MaskEdgeInvocation(BaseInvocation):
"""Applies an edge mask to an image"""
image: ImageField = InputField(description="The image to apply the mask to")
edge_size: int = InputField(description="The size of the edge")
edge_blur: int = InputField(description="The amount of blur on the edge")
low_threshold: int = InputField(description="First threshold for the hysteresis procedure in Canny edge detection")
high_threshold: int = InputField(
description="Second threshold for the hysteresis procedure in Canny edge detection"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
mask = context.services.images.get_pil_image(self.image.image_name).convert("L")
npimg = numpy.asarray(mask, dtype=numpy.uint8)
npgradient = numpy.uint8(255 * (1.0 - numpy.floor(numpy.abs(0.5 - numpy.float32(npimg) / 255.0) * 2.0)))
npedge = cv2.Canny(npimg, threshold1=self.low_threshold, threshold2=self.high_threshold)
npmask = npgradient + npedge
npmask = cv2.dilate(npmask, numpy.ones((3, 3), numpy.uint8), iterations=int(self.edge_size / 2))
new_mask = Image.fromarray(npmask)
if self.edge_blur > 0:
new_mask = new_mask.filter(ImageFilter.BoxBlur(self.edge_blur))
new_mask = ImageOps.invert(new_mask)
image_dto = context.services.images.create(
image=new_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation(
"mask_combine", title="Combine Masks", tags=["image", "mask", "multiply"], category="image", version="1.0.0"
)
class MaskCombineInvocation(BaseInvocation):
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
mask1: ImageField = InputField(description="The first mask to combine")
mask2: ImageField = InputField(description="The second image to combine")
def invoke(self, context: InvocationContext) -> ImageOutput:
mask1 = context.services.images.get_pil_image(self.mask1.image_name).convert("L")
mask2 = context.services.images.get_pil_image(self.mask2.image_name).convert("L")
combined_mask = ImageChops.multiply(mask1, mask2)
image_dto = context.services.images.create(
image=combined_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.0.0")
class ColorCorrectInvocation(BaseInvocation):
"""
Shifts the colors of a target image to match the reference image, optionally
using a mask to only color-correct certain regions of the target image.
"""
image: ImageField = InputField(description="The image to color-correct")
reference: ImageField = InputField(description="Reference image for color-correction")
mask: Optional[ImageField] = InputField(default=None, description="Mask to use when applying color-correction")
mask_blur_radius: float = InputField(default=8, description="Mask blur radius")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_init_mask = None
if self.mask is not None:
pil_init_mask = context.services.images.get_pil_image(self.mask.image_name).convert("L")
init_image = context.services.images.get_pil_image(self.reference.image_name)
result = context.services.images.get_pil_image(self.image.image_name).convert("RGBA")
# if init_image is None or init_mask is None:
# return result
# Get the original alpha channel of the mask if there is one.
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
# pil_init_mask = (
# init_mask.getchannel("A")
# if init_mask.mode == "RGBA"
# else init_mask.convert("L")
# )
pil_init_image = init_image.convert("RGBA") # Add an alpha channel if one doesn't exist
# Build an image with only visible pixels from source to use as reference for color-matching.
init_rgb_pixels = numpy.asarray(init_image.convert("RGB"), dtype=numpy.uint8)
init_a_pixels = numpy.asarray(pil_init_image.getchannel("A"), dtype=numpy.uint8)
init_mask_pixels = numpy.asarray(pil_init_mask, dtype=numpy.uint8)
# Get numpy version of result
np_image = numpy.asarray(result.convert("RGB"), dtype=numpy.uint8)
# Mask and calculate mean and standard deviation
mask_pixels = init_a_pixels * init_mask_pixels > 0
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
np_image_masked = np_image[mask_pixels, :]
if np_init_rgb_pixels_masked.size > 0:
init_means = np_init_rgb_pixels_masked.mean(axis=0)
init_std = np_init_rgb_pixels_masked.std(axis=0)
gen_means = np_image_masked.mean(axis=0)
gen_std = np_image_masked.std(axis=0)
# Color correct
np_matched_result = np_image.copy()
np_matched_result[:, :, :] = (
(
(
(np_matched_result[:, :, :].astype(numpy.float32) - gen_means[None, None, :])
/ gen_std[None, None, :]
)
* init_std[None, None, :]
+ init_means[None, None, :]
)
.clip(0, 255)
.astype(numpy.uint8)
)
matched_result = Image.fromarray(np_matched_result, mode="RGB")
else:
matched_result = Image.fromarray(np_image, mode="RGB")
# Blur the mask out (into init image) by specified amount
if self.mask_blur_radius > 0:
nm = numpy.asarray(pil_init_mask, dtype=numpy.uint8)
inverted_nm = 255 - nm
dilation_size = int(round(self.mask_blur_radius) + 20)
dilating_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (dilation_size, dilation_size))
inverted_dilated_nm = cv2.dilate(inverted_nm, dilating_kernel)
dilated_nm = 255 - inverted_dilated_nm
nmd = cv2.erode(
dilated_nm,
kernel=numpy.ones((3, 3), dtype=numpy.uint8),
iterations=int(self.mask_blur_radius / 2),
)
pmd = Image.fromarray(nmd, mode="L")
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(self.mask_blur_radius))
else:
blurred_init_mask = pil_init_mask
multiplied_blurred_init_mask = ImageChops.multiply(blurred_init_mask, result.split()[-1])
# Paste original on color-corrected generation (using blurred mask)
matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask)
image_dto = context.services.images.create(
image=matched_result,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.0.0")
class ImageHueAdjustmentInvocation(BaseInvocation):
"""Adjusts the Hue of an image."""
image: ImageField = InputField(description="The image to adjust")
hue: int = InputField(default=0, description="The degrees by which to rotate the hue, 0-360")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# Convert image to HSV color space
hsv_image = numpy.array(pil_image.convert("HSV"))
# Convert hue from 0..360 to 0..256
hue = int(256 * ((self.hue % 360) / 360))
# Increment each hue and wrap around at 255
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + hue) % 256
# Convert back to PIL format and to original color mode
pil_image = Image.fromarray(hsv_image, mode="HSV").convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
),
width=image_dto.width,
height=image_dto.height,
)
COLOR_CHANNELS = Literal[
"Red (RGBA)",
"Green (RGBA)",
"Blue (RGBA)",
"Alpha (RGBA)",
"Cyan (CMYK)",
"Magenta (CMYK)",
"Yellow (CMYK)",
"Black (CMYK)",
"Hue (HSV)",
"Saturation (HSV)",
"Value (HSV)",
"Luminosity (LAB)",
"A (LAB)",
"B (LAB)",
"Y (YCbCr)",
"Cb (YCbCr)",
"Cr (YCbCr)",
]
CHANNEL_FORMATS = {
"Red (RGBA)": ("RGBA", 0),
"Green (RGBA)": ("RGBA", 1),
"Blue (RGBA)": ("RGBA", 2),
"Alpha (RGBA)": ("RGBA", 3),
"Cyan (CMYK)": ("CMYK", 0),
"Magenta (CMYK)": ("CMYK", 1),
"Yellow (CMYK)": ("CMYK", 2),
"Black (CMYK)": ("CMYK", 3),
"Hue (HSV)": ("HSV", 0),
"Saturation (HSV)": ("HSV", 1),
"Value (HSV)": ("HSV", 2),
"Luminosity (LAB)": ("LAB", 0),
"A (LAB)": ("LAB", 1),
"B (LAB)": ("LAB", 2),
"Y (YCbCr)": ("YCbCr", 0),
"Cb (YCbCr)": ("YCbCr", 1),
"Cr (YCbCr)": ("YCbCr", 2),
}
@invocation(
"img_channel_offset",
title="Offset Image Channel",
tags=[
"image",
"offset",
"red",
"green",
"blue",
"alpha",
"cyan",
"magenta",
"yellow",
"black",
"hue",
"saturation",
"luminosity",
"value",
],
category="image",
version="1.0.0",
)
class ImageChannelOffsetInvocation(BaseInvocation):
"""Add or subtract a value from a specific color channel of an image."""
image: ImageField = InputField(description="The image to adjust")
channel: COLOR_CHANNELS = InputField(description="Which channel to adjust")
offset: int = InputField(default=0, ge=-255, le=255, description="The amount to adjust the channel by")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# extract the channel and mode from the input and reference tuple
mode = CHANNEL_FORMATS[self.channel][0]
channel_number = CHANNEL_FORMATS[self.channel][1]
# Convert PIL image to new format
converted_image = numpy.array(pil_image.convert(mode)).astype(int)
image_channel = converted_image[:, :, channel_number]
# Adjust the value, clipping to 0..255
image_channel = numpy.clip(image_channel + self.offset, 0, 255)
# Put the channel back into the image
converted_image[:, :, channel_number] = image_channel
# Convert back to RGBA format and output
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
),
width=image_dto.width,
height=image_dto.height,
)
@invocation(
"img_channel_multiply",
title="Multiply Image Channel",
tags=[
"image",
"invert",
"scale",
"multiply",
"red",
"green",
"blue",
"alpha",
"cyan",
"magenta",
"yellow",
"black",
"hue",
"saturation",
"luminosity",
"value",
],
category="image",
version="1.0.0",
)
class ImageChannelMultiplyInvocation(BaseInvocation):
"""Scale a specific color channel of an image."""
image: ImageField = InputField(description="The image to adjust")
channel: COLOR_CHANNELS = InputField(description="Which channel to adjust")
scale: float = InputField(default=1.0, ge=0.0, description="The amount to scale the channel by.")
invert_channel: bool = InputField(default=False, description="Invert the channel after scaling")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# extract the channel and mode from the input and reference tuple
mode = CHANNEL_FORMATS[self.channel][0]
channel_number = CHANNEL_FORMATS[self.channel][1]
# Convert PIL image to new format
converted_image = numpy.array(pil_image.convert(mode)).astype(float)
image_channel = converted_image[:, :, channel_number]
# Adjust the value, clipping to 0..255
image_channel = numpy.clip(image_channel * self.scale, 0, 255)
# Invert the channel if requested
if self.invert_channel:
image_channel = 255 - image_channel
# Put the channel back into the image
converted_image[:, :, channel_number] = image_channel
# Convert back to RGBA format and output
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
),
width=image_dto.width,
height=image_dto.height,
)
@invocation(
"save_image",
title="Save Image",
tags=["primitives", "image"],
category="primitives",
version="1.0.0",
use_cache=False,
)
class SaveImageInvocation(BaseInvocation):
"""Saves an image. Unlike an image primitive, this invocation stores a copy of the image."""
image: ImageField = InputField(description="The image to load")
metadata: CoreMetadata = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)