InvokeAI/ldm/invoke/devices.py
Kevin Turner b8212e4dea fix(diffusers_pipeline): ensure cuda.get_mem_info always gets a specific device index.
Also tighten up the typing of `device` attributes in general.
2023-02-17 16:56:15 -08:00

55 lines
1.9 KiB
Python

from __future__ import annotations
from contextlib import nullcontext
import torch
from torch import autocast
from ldm.invoke.globals import Globals
CPU_DEVICE = torch.device("cpu")
def choose_torch_device() -> torch.device:
'''Convenience routine for guessing which GPU device to run model on'''
if Globals.always_use_cpu:
return CPU_DEVICE
if torch.cuda.is_available():
return torch.device('cuda')
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
return torch.device('mps')
return CPU_DEVICE
def choose_precision(device: torch.device) -> str:
'''Returns an appropriate precision for the given torch device'''
if device.type == 'cuda':
device_name = torch.cuda.get_device_name(device)
if not ('GeForce GTX 1660' in device_name or 'GeForce GTX 1650' in device_name):
return 'float16'
return 'float32'
def torch_dtype(device: torch.device) -> torch.dtype:
if Globals.full_precision:
return torch.float32
if choose_precision(device) == 'float16':
return torch.float16
else:
return torch.float32
def choose_autocast(precision):
'''Returns an autocast context or nullcontext for the given precision string'''
# float16 currently requires autocast to avoid errors like:
# 'expected scalar type Half but found Float'
if precision == 'autocast' or precision == 'float16':
return autocast
return nullcontext
def normalize_device(device: str | torch.device) -> torch.device:
"""Ensure device has a device index defined, if appropriate."""
device = torch.device(device)
if device.index is None:
# cuda might be the only torch backend that currently uses the device index?
# I don't see anything like `current_device` for cpu or mps.
if device.type == 'cuda':
device = torch.device(device.type, torch.cuda.current_device())
return device