InvokeAI/ldm/invoke/model_cache.py
2022-10-11 17:24:10 -04:00

214 lines
7.4 KiB
Python

'''
Manage a cache of Stable Diffusion model files for fast switching.
They are moved between GPU and CPU as necessary. If CPU memory falls
below a preset minimum, the least recently used model will be
cleared and loaded from disk when next needed.
'''
import torch
import os
import io
import time
import gc
import hashlib
import psutil
import transformers
from sys import getrefcount
from omegaconf import OmegaConf
from omegaconf.errors import ConfigAttributeError
from ldm.util import instantiate_from_config
GIGS=2**30
AVG_MODEL_SIZE=2.1*GIGS
class ModelCache(object):
def __init__(self, config:OmegaConf, device_type:str, precision:str, min_free_mem=2*GIGS):
# prevent nasty-looking CLIP log message
transformers.logging.set_verbosity_error()
self.config = config
self.precision = precision
self.device = torch.device(device_type)
self.min_free_mem = min_free_mem
self.models = {}
self.stack = [] # this is an LRU FIFO
self.current_model = None
def get_model(self, model_name:str):
if model_name not in self.config:
print(f'"{model_name}" is not a known model name. Please check your models.yaml file')
return None
if self.current_model != model_name:
self.unload_model(self.current_model)
if model_name in self.models:
requested_model = self.models[model_name]['model']
self._model_from_cpu(requested_model)
width = self.models[model_name]['width']
height = self.models[model_name]['height']
else:
self._check_memory()
requested_model, width, height = self._load_model(model_name)
self.models[model_name] = {}
self.models[model_name]['model'] = requested_model
self.models[model_name]['width'] = width
self.models[model_name]['height'] = height
self.current_model = model_name
self._push_newest_model(model_name)
return requested_model, width, height
def list_models(self):
for name in self.config:
try:
description = self.config[name].description
except ConfigAttributeError:
description = '<no description>'
if self.current_model == name:
status = 'active'
elif name in self.models:
status = 'cached'
else:
status = 'not loaded'
print(f'{name:20s} {status:>10s} {description}')
def _check_memory(self):
free_memory = psutil.virtual_memory()[4]
print(f'DEBUG: free memory = {free_memory}, min_mem = {self.min_free_mem}')
while free_memory + AVG_MODEL_SIZE < self.min_free_mem:
print(f'DEBUG: free memory = {free_memory}')
least_recent_model = self._pop_oldest_model()
if least_recent_model is None:
return
print(f'DEBUG: clearing {least_recent_model} from cache (refcount = {getrefcount(self.models[least_recent_model]["model"])})')
del self.models[least_recent_model]['model']
gc.collect()
new_free_memory = psutil.virtual_memory()[4]
if new_free_memory <= free_memory:
print(f'>> **Unable to free memory for model caching.**')
break;
free_memory = new_free_memory
def _load_model(self, model_name:str):
"""Load and initialize the model from configuration variables passed at object creation time"""
if model_name not in self.config:
print(f'"{model_name}" is not a known model name. Please check your models.yaml file')
return None
mconfig = self.config[model_name]
config = mconfig.config
weights = mconfig.weights
width = mconfig.width
height = mconfig.height
print(f'>> Loading {model_name} weights from {weights}')
# for usage statistics
if self._has_cuda():
torch.cuda.reset_peak_memory_stats()
tic = time.time()
# this does the work
c = OmegaConf.load(config)
with open(weights,'rb') as f:
weight_bytes = f.read()
self.model_hash = self._cached_sha256(weights,weight_bytes)
pl_sd = torch.load(io.BytesIO(weight_bytes), map_location='cpu')
del weight_bytes
sd = pl_sd['state_dict']
model = instantiate_from_config(c.model)
m, u = model.load_state_dict(sd, strict=False)
if self.precision == 'float16':
print('>> Using faster float16 precision')
model.to(torch.float16)
else:
print('>> Using more accurate float32 precision')
model.to(self.device)
model.eval()
# usage statistics
toc = time.time()
print(f'>> Model loaded in', '%4.2fs' % (toc - tic))
if self._has_cuda():
print(
'>> Max VRAM used to load the model:',
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
'\n>> Current VRAM usage:'
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
)
return model, width, height
def unload_model(self, model_name:str):
if model_name not in self.models:
return
print(f'>> Unloading model {model_name}')
model = self.models[model_name]['model']
self._model_to_cpu(model)
gc.collect()
if self._has_cuda():
torch.cuda.empty_cache()
def _model_to_cpu(self,model):
if self._has_cuda():
print(f'DEBUG: moving model to cpu')
model.first_stage_model.to('cpu')
model.cond_stage_model.to('cpu')
model.model.to('cpu')
def _model_from_cpu(self,model):
if self._has_cuda():
print(f'DEBUG: moving model into {self.device.type}')
model.to(self.device)
model.first_stage_model.to(self.device)
model.cond_stage_model.to(self.device)
def _pop_oldest_model(self):
'''
Remove the first element of the FIFO, which ought
to be the least recently accessed model.
'''
if len(self.stack)>0:
self.stack.pop(0)
def _push_newest_model(self,model_name:str):
'''
Maintain a simple FIFO. First element is always the
least recent, and last element is always the most recent.
'''
try:
self.stack.remove(model_name)
except ValueError:
pass
self.stack.append(model_name)
print(f'DEBUG, stack={self.stack}')
def _has_cuda(self):
return self.device.type == 'cuda'
def _cached_sha256(self,path,data):
dirname = os.path.dirname(path)
basename = os.path.basename(path)
base, _ = os.path.splitext(basename)
hashpath = os.path.join(dirname,base+'.sha256')
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(hashpath):
with open(hashpath) as f:
hash = f.read()
return hash
print(f'>> Calculating sha256 hash of weights file')
tic = time.time()
sha = hashlib.sha256()
sha.update(data)
hash = sha.hexdigest()
toc = time.time()
print(f'>> sha256 = {hash}','(%4.2fs)' % (toc - tic))
with open(hashpath,'w') as f:
f.write(hash)
return hash