InvokeAI/invokeai/backend/model_management/models/textual_inversion.py
2023-11-11 10:55:23 +11:00

88 lines
2.4 KiB
Python

import os
from typing import Optional
import torch
# TODO: naming
from ..lora import TextualInversionModel as TextualInversionModelRaw
from .base import (
BaseModelType,
InvalidModelException,
ModelBase,
ModelConfigBase,
ModelNotFoundException,
ModelType,
SubModelType,
classproperty,
)
class TextualInversionModel(ModelBase):
# model_size: int
class Config(ModelConfigBase):
model_format: None
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.TextualInversion
super().__init__(model_path, base_model, model_type)
self.model_size = os.path.getsize(self.model_path)
def get_size(self, child_type: Optional[SubModelType] = None):
if child_type is not None:
raise Exception("There is no child models in textual inversion")
return self.model_size
def get_model(
self,
torch_dtype: Optional[torch.dtype],
child_type: Optional[SubModelType] = None,
):
if child_type is not None:
raise Exception("There is no child models in textual inversion")
checkpoint_path = self.model_path
if os.path.isdir(checkpoint_path):
checkpoint_path = os.path.join(checkpoint_path, "learned_embeds.bin")
if not os.path.exists(checkpoint_path):
raise ModelNotFoundException()
model = TextualInversionModelRaw.from_checkpoint(
file_path=checkpoint_path,
dtype=torch_dtype,
)
self.model_size = model.embedding.nelement() * model.embedding.element_size()
return model
@classproperty
def save_to_config(cls) -> bool:
return False
@classmethod
def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException()
if os.path.isdir(path):
if os.path.exists(os.path.join(path, "learned_embeds.bin")):
return None # diffusers-ti
if os.path.isfile(path):
if any(path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "bin"]):
return None
raise InvalidModelException(f"Not a valid model: {path}")
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
return model_path