mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
173 lines
7.6 KiB
Python
173 lines
7.6 KiB
Python
import time
|
|
import traceback
|
|
from threading import Event, Thread, BoundedSemaphore
|
|
|
|
from ..invocations.baseinvocation import InvocationContext
|
|
from .invocation_queue import InvocationQueueItem
|
|
from .invoker import InvocationProcessorABC, Invoker
|
|
from ..models.exceptions import CanceledException
|
|
from .graph import GraphExecutionState
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
|
|
|
|
class DefaultInvocationProcessor(InvocationProcessorABC):
|
|
__invoker_thread: Thread
|
|
__stop_event: Event
|
|
__invoker: Invoker
|
|
__threadLimit: BoundedSemaphore
|
|
|
|
def start(self, invoker) -> None:
|
|
# if we do want multithreading at some point, we could make this configurable
|
|
self.__threadLimit = BoundedSemaphore(1)
|
|
self.__invoker = invoker
|
|
self.__stop_event = Event()
|
|
self.__invoker_thread = Thread(
|
|
name="invoker_processor",
|
|
target=self.__process,
|
|
kwargs=dict(stop_event=self.__stop_event),
|
|
)
|
|
self.__invoker_thread.daemon = True # TODO: make async and do not use threads
|
|
self.__invoker_thread.start()
|
|
|
|
def stop(self, *args, **kwargs) -> None:
|
|
self.__stop_event.set()
|
|
|
|
def __process(self, stop_event: Event):
|
|
try:
|
|
self.__threadLimit.acquire()
|
|
while not stop_event.is_set():
|
|
try:
|
|
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
|
|
except Exception as e:
|
|
self.__invoker.services.logger.error("Exception while getting from queue:\n%s" % e)
|
|
|
|
if not queue_item: # Probably stopping
|
|
# do not hammer the queue
|
|
time.sleep(0.5)
|
|
continue
|
|
|
|
try:
|
|
graph_execution_state = self.__invoker.services.graph_execution_manager.get(
|
|
queue_item.graph_execution_state_id
|
|
)
|
|
except Exception as e:
|
|
self.__invoker.services.logger.error("Exception while retrieving session:\n%s" % e)
|
|
self.__invoker.services.events.emit_session_retrieval_error(
|
|
graph_execution_state_id=queue_item.graph_execution_state_id,
|
|
error_type=e.__class__.__name__,
|
|
error=traceback.format_exc(),
|
|
)
|
|
continue
|
|
|
|
try:
|
|
invocation = graph_execution_state.execution_graph.get_node(queue_item.invocation_id)
|
|
except Exception as e:
|
|
self.__invoker.services.logger.error("Exception while retrieving invocation:\n%s" % e)
|
|
self.__invoker.services.events.emit_invocation_retrieval_error(
|
|
graph_execution_state_id=queue_item.graph_execution_state_id,
|
|
node_id=queue_item.invocation_id,
|
|
error_type=e.__class__.__name__,
|
|
error=traceback.format_exc(),
|
|
)
|
|
continue
|
|
# get the source node id to provide to clients (the prepared node id is not as useful)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
|
|
|
|
# Send starting event
|
|
self.__invoker.services.events.emit_invocation_started(
|
|
graph_execution_state_id=graph_execution_state.id,
|
|
node=invocation.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
# Invoke
|
|
try:
|
|
outputs = invocation.invoke(
|
|
InvocationContext(
|
|
services=self.__invoker.services,
|
|
graph_execution_state_id=graph_execution_state.id,
|
|
)
|
|
)
|
|
|
|
# Check queue to see if this is canceled, and skip if so
|
|
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
|
|
continue
|
|
|
|
# Save outputs and history
|
|
graph_execution_state.complete(invocation.id, outputs)
|
|
|
|
# Save the state changes
|
|
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
|
|
|
|
# Send complete event
|
|
self.__invoker.services.events.emit_invocation_complete(
|
|
graph_execution_state_id=graph_execution_state.id,
|
|
node=invocation.dict(),
|
|
source_node_id=source_node_id,
|
|
result=outputs.dict(),
|
|
)
|
|
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
except CanceledException:
|
|
pass
|
|
|
|
except Exception as e:
|
|
error = traceback.format_exc()
|
|
logger.error(error)
|
|
|
|
# Save error
|
|
graph_execution_state.set_node_error(invocation.id, error)
|
|
|
|
# Save the state changes
|
|
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
|
|
|
|
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
|
|
# Send error event
|
|
self.__invoker.services.events.emit_invocation_error(
|
|
graph_execution_state_id=graph_execution_state.id,
|
|
node=invocation.dict(),
|
|
source_node_id=source_node_id,
|
|
error_type=e.__class__.__name__,
|
|
error=error,
|
|
)
|
|
|
|
pass
|
|
|
|
# Check queue to see if this is canceled, and skip if so
|
|
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
|
|
continue
|
|
|
|
# Queue any further commands if invoking all
|
|
is_complete = graph_execution_state.is_complete()
|
|
if queue_item.invoke_all and not is_complete:
|
|
try:
|
|
self.__invoker.invoke(graph_execution_state, invoke_all=True)
|
|
except Exception as e:
|
|
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
|
|
self.__invoker.services.events.emit_invocation_error(
|
|
graph_execution_state_id=graph_execution_state.id,
|
|
node=invocation.dict(),
|
|
source_node_id=source_node_id,
|
|
error_type=e.__class__.__name__,
|
|
error=traceback.format_exc(),
|
|
)
|
|
elif queue_item.invoke_all and sum(graph_execution_state.batch_indices) > 0:
|
|
batch_indicies = graph_execution_state.batch_indices.copy()
|
|
for index in range(len(batch_indicies)):
|
|
if batch_indicies[index] > 0:
|
|
batch_indicies[index] -= 1
|
|
break
|
|
new_ges = GraphExecutionState(graph=graph_execution_state.graph, batch_indices=batch_indicies)
|
|
self.__invoker.services.graph_execution_manager.set(new_ges)
|
|
self.__invoker.invoke(new_ges, invoke_all=True)
|
|
elif is_complete:
|
|
self.__invoker.services.events.emit_graph_execution_complete(graph_execution_state.id)
|
|
|
|
except KeyboardInterrupt:
|
|
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
|
|
finally:
|
|
self.__threadLimit.release()
|