mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
363 lines
14 KiB
Python
363 lines
14 KiB
Python
"""
|
|
Manage a cache of Stable Diffusion model files for fast switching.
|
|
They are moved between GPU and CPU as necessary. If the cache
|
|
grows larger than a preset maximum, then the least recently used
|
|
model will be cleared and (re)loaded from disk when next needed.
|
|
"""
|
|
|
|
import contextlib
|
|
import hashlib
|
|
import gc
|
|
import time
|
|
import os
|
|
import psutil
|
|
|
|
import safetensors
|
|
import safetensors.torch
|
|
import torch
|
|
import transformers
|
|
import warnings
|
|
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from pydantic import BaseModel
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
UNet2DConditionModel,
|
|
SchedulerMixin,
|
|
logging as diffusers_logging,
|
|
)
|
|
from huggingface_hub import list_repo_refs,HfApi
|
|
from transformers import(
|
|
CLIPTokenizer,
|
|
CLIPFeatureExtractor,
|
|
CLIPTextModel,
|
|
logging as transformers_logging,
|
|
)
|
|
from huggingface_hub import scan_cache_dir
|
|
from picklescan.scanner import scan_file_path
|
|
from typing import Sequence, Union
|
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
|
StableDiffusionSafetyChecker,
|
|
)
|
|
from . import load_pipeline_from_original_stable_diffusion_ckpt
|
|
from ..globals import Globals, global_cache_dir
|
|
from ..stable_diffusion import (
|
|
StableDiffusionGeneratorPipeline,
|
|
)
|
|
from ..stable_diffusion.offloading import ModelGroup, FullyLoadedModelGroup
|
|
from ..util import CUDA_DEVICE, ask_user, download_with_resume
|
|
|
|
MAX_MODELS_CACHED = 4
|
|
|
|
# This is the mapping from the stable diffusion submodel dict key to the class
|
|
class SDModelType(Enum):
|
|
diffusion_pipeline=StableDiffusionGeneratorPipeline # whole thing
|
|
vae=AutoencoderKL # parts
|
|
text_encoder=CLIPTextModel
|
|
tokenizer=CLIPTokenizer
|
|
unet=UNet2DConditionModel
|
|
scheduler=SchedulerMixin
|
|
safety_checker=StableDiffusionSafetyChecker
|
|
feature_extractor=CLIPFeatureExtractor
|
|
|
|
# The list of model classes we know how to fetch, for typechecking
|
|
ModelClass = Union[tuple([x.value for x in SDModelType])]
|
|
|
|
# Legacy information needed to load a legacy checkpoint file
|
|
class LegacyInfo(BaseModel):
|
|
config_file: Path
|
|
vae_file: Path
|
|
|
|
class ModelCache(object):
|
|
def __init__(
|
|
self,
|
|
max_models_cached: int=MAX_MODELS_CACHED,
|
|
execution_device: torch.device=torch.device('cuda'),
|
|
precision: torch.dtype=torch.float16,
|
|
sequential_offload: bool=False,
|
|
sha_chunksize: int = 16777216,
|
|
):
|
|
'''
|
|
:param max_models_cached: Maximum number of models to cache in CPU RAM [4]
|
|
:param execution_device: Torch device to load active model into [torch.device('cuda')]
|
|
:param precision: Precision for loaded models [torch.float16]
|
|
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
|
|
:param sha_chunksize: Chunksize to use when calculating sha256 model hash
|
|
'''
|
|
self.model_group: ModelGroup=FullyLoadedModelGroup(execution_device)
|
|
self.models: dict = dict()
|
|
self.stack: Sequence = list()
|
|
self.sequential_offload: bool=sequential_offload
|
|
self.precision: torch.dtype=precision
|
|
self.max_models_cached: int=max_models_cached
|
|
self.device: torch.device=execution_device
|
|
self.sha_chunksize=sha_chunksize
|
|
|
|
def get_submodel(
|
|
self,
|
|
repo_id_or_path: Union[str,Path],
|
|
submodel: SDModelType=SDModelType.vae,
|
|
subfolder: Path=None,
|
|
revision: str=None,
|
|
legacy_info: LegacyInfo=None,
|
|
)->ModelClass:
|
|
'''
|
|
Load and return a HuggingFace model, with RAM caching.
|
|
:param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model
|
|
:param submodel: an SDModelType enum indicating the model part to return, e.g. SDModelType.vae
|
|
:param subfolder: name of a subfolder in which the model can be found, e.g. "vae"
|
|
:param revision: model revision name
|
|
:param legacy_info: a LegacyInfo object containing additional info needed to load a legacy ckpt
|
|
'''
|
|
parent_model = self.get_model(
|
|
repo_id_or_path=repo_id_or_path,
|
|
subfolder=subfolder,
|
|
revision=revision,
|
|
)
|
|
return getattr(parent_model, submodel.name)
|
|
|
|
def get_model(
|
|
self,
|
|
repo_id_or_path: Union[str,Path],
|
|
model_type: SDModelType=SDModelType.diffusion_pipeline,
|
|
subfolder: Path=None,
|
|
revision: str=None,
|
|
legacy_info: LegacyInfo=None,
|
|
)->ModelClass:
|
|
'''
|
|
Load and return a HuggingFace model, with RAM caching.
|
|
:param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model
|
|
:param subfolder: name of a subfolder in which the model can be found, e.g. "vae"
|
|
:param revision: model revision
|
|
:param model_class: class of model to return
|
|
:param legacy_info: a LegacyInfo object containing additional info needed to load a legacy ckpt
|
|
'''
|
|
key = self._model_key( # internal unique identifier for the model
|
|
repo_id_or_path,
|
|
model_type.value,
|
|
revision,
|
|
subfolder
|
|
)
|
|
if key in self.models: # cached - move to bottom of stack
|
|
previous_key = self._current_model_key
|
|
with contextlib.suppress(ValueError):
|
|
self.stack.remove(key)
|
|
self.stack.append(key)
|
|
if previous_key != key:
|
|
if hasattr(self.current_model,'to'):
|
|
print(f' | loading {key} into GPU')
|
|
self.model_group.offload_current()
|
|
self.model_group.load(self.models[key])
|
|
else: # not cached -load
|
|
self._make_cache_room()
|
|
self.model_group.offload_current()
|
|
print(f' | loading model {key} from disk/net')
|
|
model = self._load_model_from_storage(
|
|
repo_id_or_path=repo_id_or_path,
|
|
model_class=model_type.value,
|
|
subfolder=subfolder,
|
|
revision=revision,
|
|
legacy_info=legacy_info,
|
|
)
|
|
if hasattr(model,'to'):
|
|
self.model_group.install(model) # register with the model group
|
|
self.stack.append(key) # add to LRU cache
|
|
self.models[key]=model # keep copy of model in dict
|
|
return self.models[key]
|
|
|
|
@staticmethod
|
|
def model_hash(repo_id_or_path: Union[str,Path],
|
|
revision: str=None)->str:
|
|
'''
|
|
Given the HF repo id or path to a model on disk, returns a unique
|
|
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
|
|
:param repo_id_or_path: repo_id string or Path to model file/directory on disk.
|
|
:param revision: optional revision string (if fetching a HF repo_id)
|
|
'''
|
|
if self.is_legacy_ckpt(repo_id_or_path):
|
|
return self._legacy_model_hash(repo_id_or_path)
|
|
elif Path(repo_id_or_path).is_dir():
|
|
return self._local_model_hash(repo_id_or_path)
|
|
else:
|
|
return self._hf_commit_hash(repo_id_or_path,revision)
|
|
|
|
@staticmethod
|
|
def _model_key(path,model_class,revision,subfolder)->str:
|
|
return ':'.join([str(path),model_class.__name__,str(revision or ''),str(subfolder or '')])
|
|
|
|
def _make_cache_room(self):
|
|
models_in_ram = len(self.models)
|
|
while models_in_ram >= self.max_models_cached:
|
|
if least_recently_used_key := self.stack.pop(0):
|
|
print(f' | maximum cache size reached: cache_size={models_in_ram}; unloading model {least_recently_used_key}')
|
|
self.model_group.uninstall(self.models[least_recently_used_key])
|
|
del self.models[least_recently_used_key]
|
|
models_in_ram = len(self.models)
|
|
gc.collect()
|
|
|
|
@property
|
|
def current_model(self)->ModelClass:
|
|
'''
|
|
Returns current model.
|
|
'''
|
|
return self.models[self._current_model_key]
|
|
|
|
@property
|
|
def _current_model_key(self)->str:
|
|
'''
|
|
Returns key of currently loaded model.
|
|
'''
|
|
return self.stack[-1]
|
|
|
|
def _load_model_from_storage(
|
|
self,
|
|
repo_id_or_path: Union[str,Path],
|
|
subfolder: Path=None,
|
|
revision: str=None,
|
|
model_class: ModelClass=StableDiffusionGeneratorPipeline,
|
|
legacy_info: LegacyInfo=None,
|
|
)->ModelClass:
|
|
'''
|
|
Load and return a HuggingFace model.
|
|
:param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model
|
|
:param subfolder: name of a subfolder in which the model can be found, e.g. "vae"
|
|
:param revision: model revision
|
|
:param model_class: class of model to return, defaults to StableDiffusionGeneratorPIpeline
|
|
:param legacy_info: a LegacyInfo object containing additional info needed to load a legacy ckpt
|
|
'''
|
|
# silence transformer and diffuser warnings
|
|
with SilenceWarnings():
|
|
if self.is_legacy_ckpt(repo_id_or_path):
|
|
model = self._load_ckpt_from_storage(repo_id_or_path, legacy_info)
|
|
else:
|
|
model = self._load_diffusers_from_storage(
|
|
repo_id_or_path,
|
|
subfolder,
|
|
revision,
|
|
model_class,
|
|
)
|
|
if self.sequential_offload and isinstance(model,StableDiffusionGeneratorPipeline):
|
|
model.enable_offload_submodels(self.device)
|
|
elif hasattr(model,'to'):
|
|
model.to(self.device)
|
|
return model
|
|
|
|
def _load_diffusers_from_storage(
|
|
self,
|
|
repo_id_or_path: Union[str,Path],
|
|
subfolder: Path=None,
|
|
revision: str=None,
|
|
model_class: ModelClass=StableDiffusionGeneratorPipeline,
|
|
)->ModelClass:
|
|
'''
|
|
Load and return a HuggingFace model using from_pretrained().
|
|
:param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model
|
|
:param subfolder: name of a subfolder in which the model can be found, e.g. "vae"
|
|
:param revision: model revision
|
|
:param model_class: class of model to return, defaults to StableDiffusionGeneratorPIpeline
|
|
'''
|
|
return model_class.from_pretrained(
|
|
repo_id_or_path,
|
|
revision=revision,
|
|
subfolder=subfolder or '.',
|
|
cache_dir=global_cache_dir('hub'),
|
|
)
|
|
|
|
@classmethod
|
|
def is_legacy_ckpt(cls, repo_id_or_path: Union[str,Path])->bool:
|
|
'''
|
|
Return true if the indicated path is a legacy checkpoint
|
|
:param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model
|
|
'''
|
|
path = Path(repo_id_or_path)
|
|
return path.is_file() and path.suffix in [".ckpt",".safetensors"]
|
|
|
|
def _load_ckpt_from_storage(self,
|
|
ckpt_path: Union[str,Path],
|
|
legacy_info:LegacyInfo)->StableDiffusionGeneratorPipeline:
|
|
'''
|
|
Load a legacy checkpoint, convert it, and return a StableDiffusionGeneratorPipeline.
|
|
:param ckpt_path: string or Path pointing to the weights file (.ckpt or .safetensors)
|
|
:param legacy_info: LegacyInfo object containing paths to legacy config file and alternate vae if required
|
|
'''
|
|
assert legacy_info is not None
|
|
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
|
|
checkpoint_path=ckpt_path,
|
|
original_config_file=legacy_info.config_file,
|
|
vae_path=legacy_info.vae_file,
|
|
return_generator_pipeline=True,
|
|
precision=self.precision,
|
|
)
|
|
return pipeline
|
|
|
|
def _legacy_model_hash(self, checkpoint_path: Union[str,Path])->str:
|
|
sha = hashlib.sha256()
|
|
path = Path(checkpoint_path)
|
|
assert path.is_file()
|
|
|
|
hashpath = path.parent / f"{path.name}.sha256"
|
|
if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime:
|
|
with open(hashpath) as f:
|
|
hash = f.read()
|
|
return hash
|
|
|
|
print(f' | computing hash of model {path.name}')
|
|
with open(path, "rb") as f:
|
|
while chunk := f.read(self.sha_chunksize):
|
|
sha.update(chunk)
|
|
hash = sha.hexdigest()
|
|
|
|
with open(hashpath, "w") as f:
|
|
f.write(hash)
|
|
return hash
|
|
|
|
def _local_model_hash(self, model_path: Union[str,Path])->str:
|
|
sha = hashlib.sha256()
|
|
path = Path(model_path)
|
|
|
|
hashpath = path / "checksum.sha256"
|
|
if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime:
|
|
with open(hashpath) as f:
|
|
hash = f.read()
|
|
return hash
|
|
|
|
print(f' | computing hash of model {path.name}')
|
|
for file in list(path.rglob("*.ckpt")) \
|
|
+ list(path.rglob("*.safetensors")) \
|
|
+ list(path.rglob("*.pth")):
|
|
with open(file, "rb") as f:
|
|
while chunk := f.read(self.sha_chunksize):
|
|
sha.update(chunk)
|
|
hash = sha.hexdigest()
|
|
with open(hashpath, "w") as f:
|
|
f.write(hash)
|
|
return hash
|
|
|
|
def _hf_commit_hash(self, repo_id: str, revision: str='main')->str:
|
|
api = HfApi()
|
|
info = api.list_repo_refs(
|
|
repo_id=repo_id,
|
|
repo_type='model',
|
|
)
|
|
desired_revisions = [branch for branch in info.branches if branch.name==revision]
|
|
if not desired_revisions:
|
|
raise KeyError(f"Revision '{revision}' not found in {repo_id}")
|
|
return desired_revisions[0].target_commit
|
|
|
|
class SilenceWarnings(object):
|
|
def __init__(self):
|
|
self.transformers_verbosity = transformers_logging.get_verbosity()
|
|
self.diffusers_verbosity = diffusers_logging.get_verbosity()
|
|
|
|
def __enter__(self):
|
|
transformers_logging.set_verbosity_error()
|
|
diffusers_logging.set_verbosity_error()
|
|
warnings.simplefilter('ignore')
|
|
|
|
def __exit__(self,type,value,traceback):
|
|
transformers_logging.set_verbosity(self.transformers_verbosity)
|
|
diffusers_logging.set_verbosity(self.diffusers_verbosity)
|
|
warnings.simplefilter('default')
|