InvokeAI/tests/test_model_cache.py
2023-05-01 22:57:30 -04:00

54 lines
2.0 KiB
Python

import pytest
import torch
from invokeai.backend.model_management.model_cache import ModelCache, SDModelType
from invokeai.backend.stable_diffusion import StableDiffusionGeneratorPipeline
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
SchedulerMixin,
)
from transformers import (
CLIPTokenizer,
CLIPFeatureExtractor,
CLIPTextModel,
)
cache = ModelCache()
def test_pipeline_fetch():
model0 = cache.get_model('stabilityai/sd-vae-ft-mse',SDModelType.vae)
model1 = cache.get_model('stabilityai/stable-diffusion-2-1',SDModelType.diffusion_pipeline)
model1_2 = cache.get_model('stabilityai/stable-diffusion-2-1')
assert model1==model1_2
assert model1.device==torch.device('cuda')
model2 = cache.get_model('runwayml/stable-diffusion-v1-5')
assert model2.device==torch.device('cuda')
assert model1.device==torch.device('cpu')
model1 = cache.get_model('stabilityai/stable-diffusion-2-1')
assert model1.device==torch.device('cuda')
def test_submodel_fetch():
model1_vae = cache.get_submodel('stabilityai/stable-diffusion-2-1',SDModelType.vae)
assert isinstance(model1_vae,AutoencoderKL)
model1 = cache.get_model('stabilityai/stable-diffusion-2-1',SDModelType.diffusion_pipeline)
assert model1_vae == model1.vae
model1_vae_2 = cache.get_submodel('stabilityai/stable-diffusion-2-1')
assert model1_vae == model1_vae_2
def test_transformer_fetch():
model4 = cache.get_model('openai/clip-vit-large-patch14',SDModelType.tokenizer)
assert isinstance(model4,CLIPTokenizer)
model5 = cache.get_model('openai/clip-vit-large-patch14',SDModelType.text_encoder)
assert isinstance(model5,CLIPTextModel)
def test_subfolder_fetch():
model6 = cache.get_model('stabilityai/stable-diffusion-2',SDModelType.tokenizer,subfolder="tokenizer")
assert isinstance(model6,CLIPTokenizer)
model7 = cache.get_model('stabilityai/stable-diffusion-2',SDModelType.text_encoder,subfolder="text_encoder")
assert isinstance(model7,CLIPTextModel)