InvokeAI/tests/test_textual_inversion.py
2023-03-02 13:28:17 -05:00

302 lines
15 KiB
Python

import unittest
from typing import Union
import torch
from invokeai.backend.stable_diffusion import TextualInversionManager
KNOWN_WORDS = ['a', 'b', 'c']
KNOWN_WORDS_TOKEN_IDS = [0, 1, 2]
UNKNOWN_WORDS = ['d', 'e', 'f']
class DummyEmbeddingsList(list):
def __getattr__(self, name):
if name == 'num_embeddings':
return len(self)
elif name == 'weight':
return self
elif name == 'data':
return self
def make_dummy_embedding():
return torch.randn([768])
class DummyTransformer:
def __init__(self):
self.embeddings = DummyEmbeddingsList([make_dummy_embedding() for _ in range(len(KNOWN_WORDS))])
def resize_token_embeddings(self, new_size=None):
if new_size is None:
return self.embeddings
else:
while len(self.embeddings) > new_size:
self.embeddings.pop(-1)
while len(self.embeddings) < new_size:
self.embeddings.append(make_dummy_embedding())
def get_input_embeddings(self):
return self.embeddings
class DummyTokenizer():
def __init__(self):
self.tokens = KNOWN_WORDS.copy()
self.bos_token_id = 49406 # these are what the real CLIPTokenizer has
self.eos_token_id = 49407
self.pad_token_id = 49407
self.unk_token_id = 49407
def convert_tokens_to_ids(self, token_str):
try:
return self.tokens.index(token_str)
except ValueError:
return self.unk_token_id
def add_tokens(self, token_str):
if token_str in self.tokens:
return 0
self.tokens.append(token_str)
return 1
class DummyClipEmbedder:
def __init__(self):
self.max_length = 77
self.transformer = DummyTransformer()
self.tokenizer = DummyTokenizer()
self.position_embeddings_tensor = torch.randn([77,768], dtype=torch.float32)
def position_embedding(self, indices: Union[list,torch.Tensor]):
if type(indices) is list:
indices = torch.tensor(indices, dtype=int)
return torch.index_select(self.position_embeddings_tensor, 0, indices)
def was_embedding_overwritten_correctly(tim: TextualInversionManager, overwritten_embedding: torch.Tensor, ti_indices: list, ti_embedding: torch.Tensor) -> bool:
return torch.allclose(overwritten_embedding[ti_indices], ti_embedding + tim.clip_embedder.position_embedding(ti_indices))
def make_dummy_textual_inversion_manager():
return TextualInversionManager(
tokenizer=DummyTokenizer(),
text_encoder=DummyTransformer()
)
class TextualInversionManagerTestCase(unittest.TestCase):
def test_construction(self):
tim = make_dummy_textual_inversion_manager()
def test_add_embedding_for_known_token(self):
tim = make_dummy_textual_inversion_manager()
test_embedding = torch.randn([1, 768])
test_embedding_name = KNOWN_WORDS[0]
self.assertFalse(tim.has_textual_inversion_for_trigger_string(test_embedding_name))
pre_embeddings_count = len(tim.text_encoder.resize_token_embeddings(None))
ti = tim._add_textual_inversion(test_embedding_name, test_embedding)
self.assertEqual(ti.trigger_token_id, 0)
# check adding 'test' did not create a new word
embeddings_count = len(tim.text_encoder.resize_token_embeddings(None))
self.assertEqual(pre_embeddings_count, embeddings_count)
# check it was added
self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name))
textual_inversion = tim.get_textual_inversion_for_trigger_string(test_embedding_name)
self.assertIsNotNone(textual_inversion)
self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding))
self.assertEqual(textual_inversion.trigger_string, test_embedding_name)
self.assertEqual(textual_inversion.trigger_token_id, ti.trigger_token_id)
def test_add_embedding_for_unknown_token(self):
tim = make_dummy_textual_inversion_manager()
test_embedding_1 = torch.randn([1, 768])
test_embedding_name_1 = UNKNOWN_WORDS[0]
pre_embeddings_count = len(tim.text_encoder.resize_token_embeddings(None))
added_token_id_1 = tim._add_textual_inversion(test_embedding_name_1, test_embedding_1).trigger_token_id
# new token id should get added on the end
self.assertEqual(added_token_id_1, len(KNOWN_WORDS))
# check adding did create a new word
embeddings_count = len(tim.text_encoder.resize_token_embeddings(None))
self.assertEqual(pre_embeddings_count+1, embeddings_count)
# check it was added
self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name_1))
textual_inversion = next(ti for ti in tim.textual_inversions if ti.trigger_token_id == added_token_id_1)
self.assertIsNotNone(textual_inversion)
self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding_1))
self.assertEqual(textual_inversion.trigger_string, test_embedding_name_1)
self.assertEqual(textual_inversion.trigger_token_id, added_token_id_1)
# add another one
test_embedding_2 = torch.randn([1, 768])
test_embedding_name_2 = UNKNOWN_WORDS[1]
pre_embeddings_count = len(tim.text_encoder.resize_token_embeddings(None))
added_token_id_2 = tim._add_textual_inversion(test_embedding_name_2, test_embedding_2).trigger_token_id
self.assertEqual(added_token_id_2, len(KNOWN_WORDS)+1)
# check adding did create a new word
embeddings_count = len(tim.text_encoder.resize_token_embeddings(None))
self.assertEqual(pre_embeddings_count+1, embeddings_count)
# check it was added
self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name_2))
textual_inversion = next(ti for ti in tim.textual_inversions if ti.trigger_token_id == added_token_id_2)
self.assertIsNotNone(textual_inversion)
self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding_2))
self.assertEqual(textual_inversion.trigger_string, test_embedding_name_2)
self.assertEqual(textual_inversion.trigger_token_id, added_token_id_2)
# check the old one is still there
self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name_1))
textual_inversion = next(ti for ti in tim.textual_inversions if ti.trigger_token_id == added_token_id_1)
self.assertIsNotNone(textual_inversion)
self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding_1))
self.assertEqual(textual_inversion.trigger_string, test_embedding_name_1)
self.assertEqual(textual_inversion.trigger_token_id, added_token_id_1)
def test_pad_raises_on_eos_bos(self):
tim = make_dummy_textual_inversion_manager()
prompt_token_ids_with_eos_bos = [tim.tokenizer.bos_token_id] + \
[KNOWN_WORDS_TOKEN_IDS] + \
[tim.tokenizer.eos_token_id]
with self.assertRaises(ValueError):
tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_with_eos_bos)
def test_pad_tokens_list_vector_length_1(self):
tim = make_dummy_textual_inversion_manager()
prompt_token_ids = KNOWN_WORDS_TOKEN_IDS.copy()
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids)
self.assertEqual(prompt_token_ids, expanded_prompt_token_ids)
test_embedding_1v = torch.randn([1, 768])
test_embedding_1v_token = "<inversion-trigger-vector-length-1>"
test_embedding_1v_token_id = tim._add_textual_inversion(test_embedding_1v_token, test_embedding_1v).trigger_token_id
self.assertEqual(test_embedding_1v_token_id, len(KNOWN_WORDS))
# at the end
prompt_token_ids_1v_append = prompt_token_ids + [test_embedding_1v_token_id]
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_1v_append)
self.assertEqual(prompt_token_ids_1v_append, expanded_prompt_token_ids)
# at the start
prompt_token_ids_1v_prepend = [test_embedding_1v_token_id] + prompt_token_ids
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_1v_prepend)
self.assertEqual(prompt_token_ids_1v_prepend, expanded_prompt_token_ids)
# in the middle
prompt_token_ids_1v_insert = prompt_token_ids[0:2] + [test_embedding_1v_token_id] + prompt_token_ids[2:3]
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_1v_insert)
self.assertEqual(prompt_token_ids_1v_insert, expanded_prompt_token_ids)
def test_pad_tokens_list_vector_length_2(self):
tim = make_dummy_textual_inversion_manager()
prompt_token_ids = KNOWN_WORDS_TOKEN_IDS.copy()
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids)
self.assertEqual(prompt_token_ids, expanded_prompt_token_ids)
test_embedding_2v = torch.randn([2, 768])
test_embedding_2v_token = "<inversion-trigger-vector-length-2>"
test_embedding_2v_token_id = tim._add_textual_inversion(test_embedding_2v_token, test_embedding_2v).trigger_token_id
test_embedding_2v_pad_token_ids = tim.get_textual_inversion_for_token_id(test_embedding_2v_token_id).pad_token_ids
self.assertEqual(test_embedding_2v_token_id, len(KNOWN_WORDS))
# at the end
prompt_token_ids_2v_append = prompt_token_ids + [test_embedding_2v_token_id]
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_2v_append)
self.assertNotEqual(prompt_token_ids_2v_append, expanded_prompt_token_ids)
self.assertEqual(prompt_token_ids + [test_embedding_2v_token_id] + test_embedding_2v_pad_token_ids, expanded_prompt_token_ids)
# at the start
prompt_token_ids_2v_prepend = [test_embedding_2v_token_id] + prompt_token_ids
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_2v_prepend)
self.assertNotEqual(prompt_token_ids_2v_prepend, expanded_prompt_token_ids)
self.assertEqual([test_embedding_2v_token_id] + test_embedding_2v_pad_token_ids + prompt_token_ids, expanded_prompt_token_ids)
# in the middle
prompt_token_ids_2v_insert = prompt_token_ids[0:2] + [test_embedding_2v_token_id] + prompt_token_ids[2:3]
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_2v_insert)
self.assertNotEqual(prompt_token_ids_2v_insert, expanded_prompt_token_ids)
self.assertEqual(prompt_token_ids[0:2] + [test_embedding_2v_token_id] + test_embedding_2v_pad_token_ids + prompt_token_ids[2:3], expanded_prompt_token_ids)
def test_pad_tokens_list_vector_length_8(self):
tim = make_dummy_textual_inversion_manager()
prompt_token_ids = KNOWN_WORDS_TOKEN_IDS.copy()
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids)
self.assertEqual(prompt_token_ids, expanded_prompt_token_ids)
test_embedding_8v = torch.randn([8, 768])
test_embedding_8v_token = "<inversion-trigger-vector-length-8>"
test_embedding_8v_token_id = tim._add_textual_inversion(test_embedding_8v_token, test_embedding_8v).trigger_token_id
test_embedding_8v_pad_token_ids = tim.get_textual_inversion_for_token_id(test_embedding_8v_token_id).pad_token_ids
self.assertEqual(test_embedding_8v_token_id, len(KNOWN_WORDS))
# at the end
prompt_token_ids_8v_append = prompt_token_ids + [test_embedding_8v_token_id]
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_8v_append)
self.assertNotEqual(prompt_token_ids_8v_append, expanded_prompt_token_ids)
self.assertEqual(prompt_token_ids + [test_embedding_8v_token_id] + test_embedding_8v_pad_token_ids, expanded_prompt_token_ids)
# at the start
prompt_token_ids_8v_prepend = [test_embedding_8v_token_id] + prompt_token_ids
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_8v_prepend)
self.assertNotEqual(prompt_token_ids_8v_prepend, expanded_prompt_token_ids)
self.assertEqual([test_embedding_8v_token_id] + test_embedding_8v_pad_token_ids + prompt_token_ids, expanded_prompt_token_ids)
# in the middle
prompt_token_ids_8v_insert = prompt_token_ids[0:2] + [test_embedding_8v_token_id] + prompt_token_ids[2:3]
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_8v_insert)
self.assertNotEqual(prompt_token_ids_8v_insert, expanded_prompt_token_ids)
self.assertEqual(prompt_token_ids[0:2] + [test_embedding_8v_token_id] + test_embedding_8v_pad_token_ids + prompt_token_ids[2:3], expanded_prompt_token_ids)
def test_deferred_loading(self):
tim = make_dummy_textual_inversion_manager()
test_embedding = torch.randn([1, 768])
test_embedding_name = UNKNOWN_WORDS[0]
self.assertFalse(tim.has_textual_inversion_for_trigger_string(test_embedding_name))
pre_embeddings_count = len(tim.text_encoder.resize_token_embeddings(None))
ti = tim._add_textual_inversion(test_embedding_name, test_embedding, defer_injecting_tokens=True)
self.assertIsNone(ti.trigger_token_id)
# check that a new word is not yet created
embeddings_count = len(tim.text_encoder.resize_token_embeddings(None))
self.assertEqual(pre_embeddings_count, embeddings_count)
# check it was added
self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name))
textual_inversion = tim.get_textual_inversion_for_trigger_string(test_embedding_name)
self.assertIsNotNone(textual_inversion)
self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding))
self.assertEqual(textual_inversion.trigger_string, test_embedding_name)
self.assertIsNone(textual_inversion.trigger_token_id, ti.trigger_token_id)
# check it lazy-loads
prompt = " ".join([KNOWN_WORDS[0], UNKNOWN_WORDS[0], KNOWN_WORDS[1]])
tim.create_deferred_token_ids_for_any_trigger_terms(prompt)
embeddings_count = len(tim.text_encoder.resize_token_embeddings(None))
self.assertEqual(pre_embeddings_count+1, embeddings_count)
textual_inversion = tim.get_textual_inversion_for_trigger_string(test_embedding_name)
self.assertEqual(textual_inversion.trigger_string, test_embedding_name)
self.assertEqual(textual_inversion.trigger_token_id, len(KNOWN_WORDS))