InvokeAI/invokeai/backend/stable_diffusion/diffusion/plms.py
2023-03-03 01:02:00 -05:00

144 lines
5.3 KiB
Python

"""SAMPLING ONLY."""
from functools import partial
import numpy as np
import torch
from tqdm import tqdm
from ...util import choose_torch_device
from ..diffusionmodules.util import noise_like
from .sampler import Sampler
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
class PLMSSampler(Sampler):
def __init__(self, model, schedule="linear", device=None, **kwargs):
super().__init__(model, schedule, model.num_timesteps, device)
def prepare_to_sample(self, t_enc, **kwargs):
super().prepare_to_sample(t_enc, **kwargs)
extra_conditioning_info = kwargs.get("extra_conditioning_info", None)
all_timesteps_count = kwargs.get("all_timesteps_count", t_enc)
if (
extra_conditioning_info is not None
and extra_conditioning_info.wants_cross_attention_control
):
self.invokeai_diffuser.override_cross_attention(
extra_conditioning_info, step_count=all_timesteps_count
)
else:
self.invokeai_diffuser.restore_default_cross_attention()
# this is the essential routine
@torch.no_grad()
def p_sample(
self,
x, # image, called 'img' elsewhere
c, # conditioning, called 'cond' elsewhere
t, # timesteps, called 'ts' elsewhere
index,
repeat_noise=False,
use_original_steps=False,
quantize_denoised=False,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
old_eps=[],
t_next=None,
step_count: int = 1000, # total number of steps
**kwargs,
):
b, *_, device = *x.shape, x.device
def get_model_output(x, t):
if (
unconditional_conditioning is None
or unconditional_guidance_scale == 1.0
):
# damian0815 would like to know when/if this code path is used
e_t = self.model.apply_model(x, t, c)
else:
# step_index counts in the opposite direction to index
step_index = step_count - (index + 1)
e_t = self.invokeai_diffuser.do_diffusion_step(
x,
t,
unconditional_conditioning,
c,
unconditional_guidance_scale,
step_index=step_index,
)
if score_corrector is not None:
assert self.model.parameterization == "eps"
e_t = score_corrector.modify_score(
self.model, e_t, x, t, c, **corrector_kwargs
)
return e_t
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
alphas_prev = (
self.model.alphas_cumprod_prev
if use_original_steps
else self.ddim_alphas_prev
)
sqrt_one_minus_alphas = (
self.model.sqrt_one_minus_alphas_cumprod
if use_original_steps
else self.ddim_sqrt_one_minus_alphas
)
sigmas = (
self.model.ddim_sigmas_for_original_num_steps
if use_original_steps
else self.ddim_sigmas
)
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
sqrt_one_minus_at = torch.full(
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
# direction pointing to x_t
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.0:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
e_t = get_model_output(x, t)
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
e_t_next = get_model_output(x_prev, t_next)
e_t_prime = (e_t + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * e_t - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
elif len(old_eps) >= 3:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (
55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]
) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
return x_prev, pred_x0, e_t