InvokeAI/tests/nodes/test_node_graph.py
psychedelicious c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00

699 lines
19 KiB
Python

import pytest
from pydantic import TypeAdapter
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvalidVersionError,
invocation,
invocation_output,
)
from invokeai.app.invocations.image import ShowImageInvocation
from invokeai.app.invocations.math import AddInvocation, SubtractInvocation
from invokeai.app.invocations.primitives import FloatInvocation, IntegerInvocation
from invokeai.app.invocations.upscale import ESRGANInvocation
from invokeai.app.services.shared.default_graphs import create_text_to_image
from invokeai.app.services.shared.graph import (
CollectInvocation,
Edge,
EdgeConnection,
Graph,
GraphInvocation,
InvalidEdgeError,
IterateInvocation,
NodeAlreadyInGraphError,
NodeNotFoundError,
are_connections_compatible,
)
from .test_nodes import (
ImageToImageTestInvocation,
ListPassThroughInvocation,
PromptTestInvocation,
TextToImageTestInvocation,
)
# Helpers
def create_edge(from_id: str, from_field: str, to_id: str, to_field: str) -> Edge:
return Edge(
source=EdgeConnection(node_id=from_id, field=from_field),
destination=EdgeConnection(node_id=to_id, field=to_field),
)
# Tests
def test_connections_are_compatible():
from_node = TextToImageTestInvocation(id="1", prompt="Banana sushi")
from_field = "image"
to_node = ESRGANInvocation(id="2")
to_field = "image"
result = are_connections_compatible(from_node, from_field, to_node, to_field)
assert result is True
def test_connections_are_incompatible():
from_node = TextToImageTestInvocation(id="1", prompt="Banana sushi")
from_field = "image"
to_node = ESRGANInvocation(id="2")
to_field = "strength"
result = are_connections_compatible(from_node, from_field, to_node, to_field)
assert result is False
def test_connections_incompatible_with_invalid_fields():
from_node = TextToImageTestInvocation(id="1", prompt="Banana sushi")
from_field = "invalid_field"
to_node = ESRGANInvocation(id="2")
to_field = "image"
# From field is invalid
result = are_connections_compatible(from_node, from_field, to_node, to_field)
assert result is False
# To field is invalid
from_field = "image"
to_field = "invalid_field"
result = are_connections_compatible(from_node, from_field, to_node, to_field)
assert result is False
def test_graph_can_add_node():
g = Graph()
n = TextToImageTestInvocation(id="1", prompt="Banana sushi")
g.add_node(n)
assert n.id in g.nodes
def test_graph_fails_to_add_node_with_duplicate_id():
g = Graph()
n = TextToImageTestInvocation(id="1", prompt="Banana sushi")
g.add_node(n)
n2 = TextToImageTestInvocation(id="1", prompt="Banana sushi the second")
with pytest.raises(NodeAlreadyInGraphError):
g.add_node(n2)
def test_graph_updates_node():
g = Graph()
n = TextToImageTestInvocation(id="1", prompt="Banana sushi")
g.add_node(n)
n2 = TextToImageTestInvocation(id="2", prompt="Banana sushi the second")
g.add_node(n2)
nu = TextToImageTestInvocation(id="1", prompt="Banana sushi updated")
g.update_node("1", nu)
assert g.nodes["1"].prompt == "Banana sushi updated"
def test_graph_fails_to_update_node_if_type_changes():
g = Graph()
n = TextToImageTestInvocation(id="1", prompt="Banana sushi")
g.add_node(n)
n2 = ESRGANInvocation(id="2")
g.add_node(n2)
nu = ESRGANInvocation(id="1")
with pytest.raises(TypeError):
g.update_node("1", nu)
def test_graph_allows_non_conflicting_id_change():
g = Graph()
n = TextToImageTestInvocation(id="1", prompt="Banana sushi")
g.add_node(n)
n2 = ESRGANInvocation(id="2")
g.add_node(n2)
e1 = create_edge(n.id, "image", n2.id, "image")
g.add_edge(e1)
nu = TextToImageTestInvocation(id="3", prompt="Banana sushi")
g.update_node("1", nu)
with pytest.raises(NodeNotFoundError):
g.get_node("1")
assert g.get_node("3").prompt == "Banana sushi"
assert len(g.edges) == 1
assert (
Edge(source=EdgeConnection(node_id="3", field="image"), destination=EdgeConnection(node_id="2", field="image"))
in g.edges
)
def test_graph_fails_to_update_node_id_if_conflict():
g = Graph()
n = TextToImageTestInvocation(id="1", prompt="Banana sushi")
g.add_node(n)
n2 = TextToImageTestInvocation(id="2", prompt="Banana sushi the second")
g.add_node(n2)
nu = TextToImageTestInvocation(id="2", prompt="Banana sushi")
with pytest.raises(NodeAlreadyInGraphError):
g.update_node("1", nu)
def test_graph_adds_edge():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "image", n2.id, "image")
g.add_edge(e)
assert e in g.edges
def test_graph_fails_to_add_edge_with_cycle():
g = Graph()
n1 = ESRGANInvocation(id="1")
g.add_node(n1)
e = create_edge(n1.id, "image", n1.id, "image")
with pytest.raises(InvalidEdgeError):
g.add_edge(e)
def test_graph_fails_to_add_edge_with_long_cycle():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2")
n3 = ESRGANInvocation(id="3")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
e1 = create_edge(n1.id, "image", n2.id, "image")
e2 = create_edge(n2.id, "image", n3.id, "image")
e3 = create_edge(n3.id, "image", n2.id, "image")
g.add_edge(e1)
g.add_edge(e2)
with pytest.raises(InvalidEdgeError):
g.add_edge(e3)
def test_graph_fails_to_add_edge_with_missing_node_id():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge("1", "image", "3", "image")
e2 = create_edge("3", "image", "1", "image")
with pytest.raises(InvalidEdgeError):
g.add_edge(e1)
with pytest.raises(InvalidEdgeError):
g.add_edge(e2)
def test_graph_fails_to_add_edge_when_destination_exists():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2")
n3 = ESRGANInvocation(id="3")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
e1 = create_edge(n1.id, "image", n2.id, "image")
e2 = create_edge(n1.id, "image", n3.id, "image")
e3 = create_edge(n2.id, "image", n3.id, "image")
g.add_edge(e1)
g.add_edge(e2)
with pytest.raises(InvalidEdgeError):
g.add_edge(e3)
def test_graph_fails_to_add_edge_with_mismatched_types():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge("1", "image", "2", "strength")
with pytest.raises(InvalidEdgeError):
g.add_edge(e1)
def test_graph_connects_collector():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = TextToImageTestInvocation(id="2", prompt="Banana sushi 2")
n3 = CollectInvocation(id="3")
n4 = ListPassThroughInvocation(id="4")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
g.add_node(n4)
e1 = create_edge("1", "image", "3", "item")
e2 = create_edge("2", "image", "3", "item")
e3 = create_edge("3", "collection", "4", "collection")
g.add_edge(e1)
g.add_edge(e2)
g.add_edge(e3)
# TODO: test that derived types mixed with base types are compatible
def test_graph_collector_invalid_with_varying_input_types():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = PromptTestInvocation(id="2", prompt="banana sushi 2")
n3 = CollectInvocation(id="3")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
e1 = create_edge("1", "image", "3", "item")
e2 = create_edge("2", "prompt", "3", "item")
g.add_edge(e1)
with pytest.raises(InvalidEdgeError):
g.add_edge(e2)
def test_graph_collector_invalid_with_varying_input_output():
g = Graph()
n1 = PromptTestInvocation(id="1", prompt="Banana sushi")
n2 = PromptTestInvocation(id="2", prompt="Banana sushi 2")
n3 = CollectInvocation(id="3")
n4 = ListPassThroughInvocation(id="4")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
g.add_node(n4)
e1 = create_edge("1", "prompt", "3", "item")
e2 = create_edge("2", "prompt", "3", "item")
e3 = create_edge("3", "collection", "4", "collection")
g.add_edge(e1)
g.add_edge(e2)
with pytest.raises(InvalidEdgeError):
g.add_edge(e3)
def test_graph_collector_invalid_with_non_list_output():
g = Graph()
n1 = PromptTestInvocation(id="1", prompt="Banana sushi")
n2 = PromptTestInvocation(id="2", prompt="Banana sushi 2")
n3 = CollectInvocation(id="3")
n4 = PromptTestInvocation(id="4")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
g.add_node(n4)
e1 = create_edge("1", "prompt", "3", "item")
e2 = create_edge("2", "prompt", "3", "item")
e3 = create_edge("3", "collection", "4", "prompt")
g.add_edge(e1)
g.add_edge(e2)
with pytest.raises(InvalidEdgeError):
g.add_edge(e3)
def test_graph_connects_iterator():
g = Graph()
n1 = ListPassThroughInvocation(id="1")
n2 = IterateInvocation(id="2")
n3 = ImageToImageTestInvocation(id="3", prompt="Banana sushi")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
e1 = create_edge("1", "collection", "2", "collection")
e2 = create_edge("2", "item", "3", "image")
g.add_edge(e1)
g.add_edge(e2)
# TODO: TEST INVALID ITERATOR SCENARIOS
def test_graph_iterator_invalid_if_multiple_inputs():
g = Graph()
n1 = ListPassThroughInvocation(id="1")
n2 = IterateInvocation(id="2")
n3 = ImageToImageTestInvocation(id="3", prompt="Banana sushi")
n4 = ListPassThroughInvocation(id="4")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
g.add_node(n4)
e1 = create_edge("1", "collection", "2", "collection")
e2 = create_edge("2", "item", "3", "image")
e3 = create_edge("4", "collection", "2", "collection")
g.add_edge(e1)
g.add_edge(e2)
with pytest.raises(InvalidEdgeError):
g.add_edge(e3)
def test_graph_iterator_invalid_if_input_not_list():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = IterateInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge("1", "collection", "2", "collection")
with pytest.raises(InvalidEdgeError):
g.add_edge(e1)
def test_graph_iterator_invalid_if_output_and_input_types_different():
g = Graph()
n1 = ListPassThroughInvocation(id="1")
n2 = IterateInvocation(id="2")
n3 = PromptTestInvocation(id="3", prompt="Banana sushi")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
e1 = create_edge("1", "collection", "2", "collection")
e2 = create_edge("2", "item", "3", "prompt")
g.add_edge(e1)
with pytest.raises(InvalidEdgeError):
g.add_edge(e2)
def test_graph_validates():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge("1", "image", "2", "image")
g.add_edge(e1)
assert g.is_valid() is True
def test_graph_invalid_if_edges_reference_missing_nodes():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
g.nodes[n1.id] = n1
e1 = create_edge("1", "image", "2", "image")
g.edges.append(e1)
assert g.is_valid() is False
def test_graph_invalid_if_subgraph_invalid():
g = Graph()
n1 = GraphInvocation(id="1")
n1.graph = Graph()
n1_1 = TextToImageTestInvocation(id="2", prompt="Banana sushi")
n1.graph.nodes[n1_1.id] = n1_1
e1 = create_edge("1", "image", "2", "image")
n1.graph.edges.append(e1)
g.nodes[n1.id] = n1
assert g.is_valid() is False
def test_graph_invalid_if_has_cycle():
g = Graph()
n1 = ESRGANInvocation(id="1")
n2 = ESRGANInvocation(id="2")
g.nodes[n1.id] = n1
g.nodes[n2.id] = n2
e1 = create_edge("1", "image", "2", "image")
e2 = create_edge("2", "image", "1", "image")
g.edges.append(e1)
g.edges.append(e2)
assert g.is_valid() is False
def test_graph_invalid_with_invalid_connection():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2")
g.nodes[n1.id] = n1
g.nodes[n2.id] = n2
e1 = create_edge("1", "image", "2", "strength")
g.edges.append(e1)
assert g.is_valid() is False
# TODO: Subgraph operations
def test_graph_gets_subgraph_node():
g = Graph()
n1 = GraphInvocation(id="1")
n1.graph = Graph()
n1.graph.add_node
n1_1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n1.graph.add_node(n1_1)
g.add_node(n1)
result = g.get_node("1.1")
assert result is not None
assert result.id == "1"
assert result == n1_1
def test_graph_expands_subgraph():
g = Graph()
n1 = GraphInvocation(id="1")
n1.graph = Graph()
n1_1 = AddInvocation(id="1", a=1, b=2)
n1_2 = SubtractInvocation(id="2", b=3)
n1.graph.add_node(n1_1)
n1.graph.add_node(n1_2)
n1.graph.add_edge(create_edge("1", "value", "2", "a"))
g.add_node(n1)
n2 = AddInvocation(id="2", b=5)
g.add_node(n2)
g.add_edge(create_edge("1.2", "value", "2", "a"))
dg = g.nx_graph_flat()
assert set(dg.nodes) == set(["1.1", "1.2", "2"])
assert set(dg.edges) == set([("1.1", "1.2"), ("1.2", "2")])
def test_graph_subgraph_t2i():
g = Graph()
n1 = GraphInvocation(id="1")
# Get text to image default graph
lg = create_text_to_image()
n1.graph = lg.graph
g.add_node(n1)
n2 = IntegerInvocation(id="2", value=512)
n3 = IntegerInvocation(id="3", value=256)
g.add_node(n2)
g.add_node(n3)
g.add_edge(create_edge("2", "value", "1.width", "value"))
g.add_edge(create_edge("3", "value", "1.height", "value"))
n4 = ShowImageInvocation(id="4")
g.add_node(n4)
g.add_edge(create_edge("1.8", "image", "4", "image"))
# Validate
dg = g.nx_graph_flat()
assert set(dg.nodes) == set(
["1.width", "1.height", "1.seed", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8", "2", "3", "4"]
)
expected_edges = [(f"1.{e.source.node_id}", f"1.{e.destination.node_id}") for e in lg.graph.edges]
expected_edges.extend([("2", "1.width"), ("3", "1.height"), ("1.8", "4")])
print(expected_edges)
print(list(dg.edges))
assert set(dg.edges) == set(expected_edges)
def test_graph_fails_to_get_missing_subgraph_node():
g = Graph()
n1 = GraphInvocation(id="1")
n1.graph = Graph()
n1.graph.add_node
n1_1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n1.graph.add_node(n1_1)
g.add_node(n1)
with pytest.raises(NodeNotFoundError):
_ = g.get_node("1.2")
def test_graph_fails_to_enumerate_non_subgraph_node():
g = Graph()
n1 = GraphInvocation(id="1")
n1.graph = Graph()
n1.graph.add_node
n1_1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n1.graph.add_node(n1_1)
g.add_node(n1)
n2 = ESRGANInvocation(id="2")
g.add_node(n2)
with pytest.raises(NodeNotFoundError):
_ = g.get_node("2.1")
def test_graph_gets_networkx_graph():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "image", n2.id, "image")
g.add_edge(e)
nxg = g.nx_graph()
assert "1" in nxg.nodes
assert "2" in nxg.nodes
assert ("1", "2") in nxg.edges
# TODO: Graph serializes and deserializes
def test_graph_can_serialize():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ESRGANInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "image", n2.id, "image")
g.add_edge(e)
# Not throwing on this line is sufficient
_ = g.model_dump_json()
def test_graph_can_deserialize():
g = Graph()
n1 = TextToImageTestInvocation(id="1", prompt="Banana sushi")
n2 = ImageToImageTestInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "image", n2.id, "image")
g.add_edge(e)
json = g.model_dump_json()
adapter_graph = TypeAdapter(Graph)
g2 = adapter_graph.validate_json(json)
assert g2 is not None
assert g2.nodes["1"] is not None
assert g2.nodes["2"] is not None
assert len(g2.edges) == 1
assert g2.edges[0].source.node_id == "1"
assert g2.edges[0].source.field == "image"
assert g2.edges[0].destination.node_id == "2"
assert g2.edges[0].destination.field == "image"
def test_invocation_decorator():
invocation_type = "test_invocation_decorator"
title = "Test Invocation"
tags = ["first", "second", "third"]
category = "category"
version = "1.2.3"
@invocation(invocation_type, title=title, tags=tags, category=category, version=version)
class TestInvocation(BaseInvocation):
def invoke(self):
pass
schema = TestInvocation.model_json_schema()
assert schema.get("title") == title
assert schema.get("tags") == tags
assert schema.get("category") == category
assert schema.get("version") == version
assert TestInvocation(id="1").type == invocation_type # type: ignore (type is dynamically added)
def test_invocation_version_must_be_semver():
valid_version = "1.0.0"
invalid_version = "not_semver"
@invocation("test_invocation_version_valid", version=valid_version)
class ValidVersionInvocation(BaseInvocation):
def invoke(self):
pass
with pytest.raises(InvalidVersionError):
@invocation("test_invocation_version_invalid", version=invalid_version)
class InvalidVersionInvocation(BaseInvocation):
def invoke(self):
pass
def test_invocation_output_decorator():
output_type = "test_output"
@invocation_output(output_type)
class TestOutput(BaseInvocationOutput):
pass
assert TestOutput().type == output_type # type: ignore (type is dynamically added)
def test_floats_accept_ints():
g = Graph()
n1 = IntegerInvocation(id="1", value=1)
n2 = FloatInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "value", n2.id, "value")
# Not throwing on this line is sufficient
g.add_edge(e)
def test_ints_do_not_accept_floats():
g = Graph()
n1 = FloatInvocation(id="1", value=1.0)
n2 = IntegerInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "value", n2.id, "value")
with pytest.raises(InvalidEdgeError):
g.add_edge(e)
def test_graph_can_generate_schema():
# Not throwing on this line is sufficient
# NOTE: if this test fails, it's PROBABLY because a new invocation type is breaking schema generation
_ = Graph.model_json_schema()