mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
bf94412d14
multi-select actions include: - drag to board to move all to that board - right click to add all to board or delete all backend changes: - add routes for changing board for list of image names, deleting list of images - change image-specific routes to `images/i/{image_name}` to not clobber other routes (like `images/upload`, `images/delete`) - subclass pydantic `BaseModel` as `BaseModelExcludeNull`, which excludes null values when calling `dict()` on the model. this fixes inconsistent types related to JSON parsing null values into `null` instead of `undefined` - remove `board_id` from `remove_image_from_board` frontend changes: - multi-selection stuff uses `ImageDTO[]` as payloads, for dnd and other mutations. this gives us access to image `board_id`s when hitting routes, and enables efficient cache updates. - consolidate change board and delete image modals to handle single and multiples - board totals are now re-fetched on mutation and not kept in sync manually - was way too tedious to do this - fixed warning about nested `<p>` elements - closes #4088 , need to handle case when `autoAddBoardId` is `"none"` - add option to show gallery image delete button on every gallery image frontend refactors/organisation: - make typegen script js instead of ts - enable `noUncheckedIndexedAccess` to help avoid bugs when indexing into arrays, many small changes needed to satisfy TS after this - move all image-related endpoints into `endpoints/images.ts`, its a big file now, but this fixes a number of circular dependency issues that were otherwise felt impossible to resolve
154 lines
7.0 KiB
Python
154 lines
7.0 KiB
Python
from typing import Literal, Optional, Union
|
|
|
|
from pydantic import Field
|
|
|
|
from invokeai.app.invocations.baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
InvocationConfig,
|
|
InvocationContext,
|
|
)
|
|
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
|
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
|
|
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
|
|
|
|
|
|
class LoRAMetadataField(BaseModelExcludeNull):
|
|
"""LoRA metadata for an image generated in InvokeAI."""
|
|
|
|
lora: LoRAModelField = Field(description="The LoRA model")
|
|
weight: float = Field(description="The weight of the LoRA model")
|
|
|
|
|
|
class CoreMetadata(BaseModelExcludeNull):
|
|
"""Core generation metadata for an image generated in InvokeAI."""
|
|
|
|
generation_mode: str = Field(
|
|
description="The generation mode that output this image",
|
|
)
|
|
positive_prompt: str = Field(description="The positive prompt parameter")
|
|
negative_prompt: str = Field(description="The negative prompt parameter")
|
|
width: int = Field(description="The width parameter")
|
|
height: int = Field(description="The height parameter")
|
|
seed: int = Field(description="The seed used for noise generation")
|
|
rand_device: str = Field(description="The device used for random number generation")
|
|
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
|
steps: int = Field(description="The number of steps used for inference")
|
|
scheduler: str = Field(description="The scheduler used for inference")
|
|
clip_skip: int = Field(
|
|
description="The number of skipped CLIP layers",
|
|
)
|
|
model: MainModelField = Field(description="The main model used for inference")
|
|
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
|
|
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
|
vae: Union[VAEModelField, None] = Field(
|
|
default=None,
|
|
description="The VAE used for decoding, if the main model's default was not used",
|
|
)
|
|
|
|
# Latents-to-Latents
|
|
strength: Union[float, None] = Field(
|
|
default=None,
|
|
description="The strength used for latents-to-latents",
|
|
)
|
|
init_image: Union[str, None] = Field(default=None, description="The name of the initial image")
|
|
|
|
# SDXL
|
|
positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter")
|
|
negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter")
|
|
|
|
# SDXL Refiner
|
|
refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used")
|
|
refiner_cfg_scale: Union[float, None] = Field(
|
|
default=None,
|
|
description="The classifier-free guidance scale parameter used for the refiner",
|
|
)
|
|
refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner")
|
|
refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner")
|
|
refiner_aesthetic_store: Union[float, None] = Field(
|
|
default=None, description="The aesthetic score used for the refiner"
|
|
)
|
|
refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
|
|
|
|
|
|
class ImageMetadata(BaseModelExcludeNull):
|
|
"""An image's generation metadata"""
|
|
|
|
metadata: Optional[dict] = Field(
|
|
default=None,
|
|
description="The image's core metadata, if it was created in the Linear or Canvas UI",
|
|
)
|
|
graph: Optional[dict] = Field(default=None, description="The graph that created the image")
|
|
|
|
|
|
class MetadataAccumulatorOutput(BaseInvocationOutput):
|
|
"""The output of the MetadataAccumulator node"""
|
|
|
|
type: Literal["metadata_accumulator_output"] = "metadata_accumulator_output"
|
|
|
|
metadata: CoreMetadata = Field(description="The core metadata for the image")
|
|
|
|
|
|
class MetadataAccumulatorInvocation(BaseInvocation):
|
|
"""Outputs a Core Metadata Object"""
|
|
|
|
type: Literal["metadata_accumulator"] = "metadata_accumulator"
|
|
|
|
generation_mode: str = Field(
|
|
description="The generation mode that output this image",
|
|
)
|
|
positive_prompt: str = Field(description="The positive prompt parameter")
|
|
negative_prompt: str = Field(description="The negative prompt parameter")
|
|
width: int = Field(description="The width parameter")
|
|
height: int = Field(description="The height parameter")
|
|
seed: int = Field(description="The seed used for noise generation")
|
|
rand_device: str = Field(description="The device used for random number generation")
|
|
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
|
steps: int = Field(description="The number of steps used for inference")
|
|
scheduler: str = Field(description="The scheduler used for inference")
|
|
clip_skip: int = Field(
|
|
description="The number of skipped CLIP layers",
|
|
)
|
|
model: MainModelField = Field(description="The main model used for inference")
|
|
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
|
|
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
|
strength: Union[float, None] = Field(
|
|
default=None,
|
|
description="The strength used for latents-to-latents",
|
|
)
|
|
init_image: Union[str, None] = Field(default=None, description="The name of the initial image")
|
|
vae: Union[VAEModelField, None] = Field(
|
|
default=None,
|
|
description="The VAE used for decoding, if the main model's default was not used",
|
|
)
|
|
|
|
# SDXL
|
|
positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter")
|
|
negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter")
|
|
|
|
# SDXL Refiner
|
|
refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used")
|
|
refiner_cfg_scale: Union[float, None] = Field(
|
|
default=None,
|
|
description="The classifier-free guidance scale parameter used for the refiner",
|
|
)
|
|
refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner")
|
|
refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner")
|
|
refiner_aesthetic_store: Union[float, None] = Field(
|
|
default=None, description="The aesthetic score used for the refiner"
|
|
)
|
|
refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Metadata Accumulator",
|
|
"tags": ["image", "metadata", "generation"],
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
|
|
"""Collects and outputs a CoreMetadata object"""
|
|
|
|
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))
|