mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
218 lines
9.0 KiB
Python
218 lines
9.0 KiB
Python
# Copyright (c) 2024 The InvokeAI Development Team
|
|
import os
|
|
import sys
|
|
from pathlib import Path
|
|
from typing import Any, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import onnx
|
|
import torch
|
|
from onnx import numpy_helper
|
|
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
|
|
|
|
ONNX_WEIGHTS_NAME = "model.onnx"
|
|
|
|
|
|
# NOTE FROM LS: This was copied from Stalker's original implementation.
|
|
# I have not yet gone through and fixed all the type hints
|
|
class IAIOnnxRuntimeModel(torch.nn.Module):
|
|
class _tensor_access:
|
|
def __init__(self, model): # type: ignore
|
|
self.model = model
|
|
self.indexes = {}
|
|
for idx, obj in enumerate(self.model.proto.graph.initializer):
|
|
self.indexes[obj.name] = idx
|
|
|
|
def __getitem__(self, key: str): # type: ignore
|
|
value = self.model.proto.graph.initializer[self.indexes[key]]
|
|
return numpy_helper.to_array(value)
|
|
|
|
def __setitem__(self, key: str, value: np.ndarray): # type: ignore
|
|
new_node = numpy_helper.from_array(value)
|
|
# set_external_data(new_node, location="in-memory-location")
|
|
new_node.name = key
|
|
# new_node.ClearField("raw_data")
|
|
del self.model.proto.graph.initializer[self.indexes[key]]
|
|
self.model.proto.graph.initializer.insert(self.indexes[key], new_node)
|
|
# self.model.data[key] = OrtValue.ortvalue_from_numpy(value)
|
|
|
|
# __delitem__
|
|
|
|
def __contains__(self, key: str) -> bool:
|
|
return self.indexes[key] in self.model.proto.graph.initializer
|
|
|
|
def items(self) -> List[Tuple[str, Any]]: # fixme
|
|
raise NotImplementedError("tensor.items")
|
|
# return [(obj.name, obj) for obj in self.raw_proto]
|
|
|
|
def keys(self) -> List[str]:
|
|
return list(self.indexes.keys())
|
|
|
|
def values(self) -> List[Any]: # fixme
|
|
raise NotImplementedError("tensor.values")
|
|
# return [obj for obj in self.raw_proto]
|
|
|
|
def size(self) -> int:
|
|
bytesSum = 0
|
|
for node in self.model.proto.graph.initializer:
|
|
bytesSum += sys.getsizeof(node.raw_data)
|
|
return bytesSum
|
|
|
|
class _access_helper:
|
|
def __init__(self, raw_proto): # type: ignore
|
|
self.indexes = {}
|
|
self.raw_proto = raw_proto
|
|
for idx, obj in enumerate(raw_proto):
|
|
self.indexes[obj.name] = idx
|
|
|
|
def __getitem__(self, key: str): # type: ignore
|
|
return self.raw_proto[self.indexes[key]]
|
|
|
|
def __setitem__(self, key: str, value): # type: ignore
|
|
index = self.indexes[key]
|
|
del self.raw_proto[index]
|
|
self.raw_proto.insert(index, value)
|
|
|
|
# __delitem__
|
|
|
|
def __contains__(self, key: str) -> bool:
|
|
return key in self.indexes
|
|
|
|
def items(self) -> List[Tuple[str, Any]]:
|
|
return [(obj.name, obj) for obj in self.raw_proto]
|
|
|
|
def keys(self) -> List[str]:
|
|
return list(self.indexes.keys())
|
|
|
|
def values(self) -> List[Any]: # fixme
|
|
return list(self.raw_proto)
|
|
|
|
def __init__(self, model_path: str, provider: Optional[str]):
|
|
self.path = model_path
|
|
self.session = None
|
|
self.provider = provider
|
|
"""
|
|
self.data_path = self.path + "_data"
|
|
if not os.path.exists(self.data_path):
|
|
print(f"Moving model tensors to separate file: {self.data_path}")
|
|
tmp_proto = onnx.load(model_path, load_external_data=True)
|
|
onnx.save_model(tmp_proto, self.path, save_as_external_data=True, all_tensors_to_one_file=True, location=os.path.basename(self.data_path), size_threshold=1024, convert_attribute=False)
|
|
del tmp_proto
|
|
gc.collect()
|
|
|
|
self.proto = onnx.load(model_path, load_external_data=False)
|
|
"""
|
|
super().__init__()
|
|
self.proto = onnx.load(model_path, load_external_data=True)
|
|
# self.data = dict()
|
|
# for tensor in self.proto.graph.initializer:
|
|
# name = tensor.name
|
|
|
|
# if tensor.HasField("raw_data"):
|
|
# npt = numpy_helper.to_array(tensor)
|
|
# orv = OrtValue.ortvalue_from_numpy(npt)
|
|
# # self.data[name] = orv
|
|
# # set_external_data(tensor, location="in-memory-location")
|
|
# tensor.name = name
|
|
# # tensor.ClearField("raw_data")
|
|
|
|
self.nodes = self._access_helper(self.proto.graph.node) # type: ignore
|
|
# self.initializers = self._access_helper(self.proto.graph.initializer)
|
|
# print(self.proto.graph.input)
|
|
# print(self.proto.graph.initializer)
|
|
|
|
self.tensors = self._tensor_access(self) # type: ignore
|
|
|
|
# TODO: integrate with model manager/cache
|
|
def create_session(self, height=None, width=None):
|
|
if self.session is None or self.session_width != width or self.session_height != height:
|
|
# onnx.save(self.proto, "tmp.onnx")
|
|
# onnx.save_model(self.proto, "tmp.onnx", save_as_external_data=True, all_tensors_to_one_file=True, location="tmp.onnx_data", size_threshold=1024, convert_attribute=False)
|
|
# TODO: something to be able to get weight when they already moved outside of model proto
|
|
# (trimmed_model, external_data) = buffer_external_data_tensors(self.proto)
|
|
sess = SessionOptions()
|
|
# self._external_data.update(**external_data)
|
|
# sess.add_external_initializers(list(self.data.keys()), list(self.data.values()))
|
|
# sess.enable_profiling = True
|
|
|
|
# sess.intra_op_num_threads = 1
|
|
# sess.inter_op_num_threads = 1
|
|
# sess.execution_mode = ExecutionMode.ORT_SEQUENTIAL
|
|
# sess.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
# sess.enable_cpu_mem_arena = True
|
|
# sess.enable_mem_pattern = True
|
|
# sess.add_session_config_entry("session.intra_op.use_xnnpack_threadpool", "1") ########### It's the key code
|
|
self.session_height = height
|
|
self.session_width = width
|
|
if height and width:
|
|
sess.add_free_dimension_override_by_name("unet_sample_batch", 2)
|
|
sess.add_free_dimension_override_by_name("unet_sample_channels", 4)
|
|
sess.add_free_dimension_override_by_name("unet_hidden_batch", 2)
|
|
sess.add_free_dimension_override_by_name("unet_hidden_sequence", 77)
|
|
sess.add_free_dimension_override_by_name("unet_sample_height", self.session_height)
|
|
sess.add_free_dimension_override_by_name("unet_sample_width", self.session_width)
|
|
sess.add_free_dimension_override_by_name("unet_time_batch", 1)
|
|
providers = []
|
|
if self.provider:
|
|
providers.append(self.provider)
|
|
else:
|
|
providers = get_available_providers()
|
|
if "TensorrtExecutionProvider" in providers:
|
|
providers.remove("TensorrtExecutionProvider")
|
|
try:
|
|
self.session = InferenceSession(self.proto.SerializeToString(), providers=providers, sess_options=sess)
|
|
except Exception as e:
|
|
raise e
|
|
# self.session = InferenceSession("tmp.onnx", providers=[self.provider], sess_options=self.sess_options)
|
|
# self.io_binding = self.session.io_binding()
|
|
|
|
def release_session(self):
|
|
self.session = None
|
|
import gc
|
|
|
|
gc.collect()
|
|
return
|
|
|
|
def __call__(self, **kwargs):
|
|
if self.session is None:
|
|
raise Exception("You should call create_session before running model")
|
|
|
|
inputs = {k: np.array(v) for k, v in kwargs.items()}
|
|
# output_names = self.session.get_outputs()
|
|
# for k in inputs:
|
|
# self.io_binding.bind_cpu_input(k, inputs[k])
|
|
# for name in output_names:
|
|
# self.io_binding.bind_output(name.name)
|
|
# self.session.run_with_iobinding(self.io_binding, None)
|
|
# return self.io_binding.copy_outputs_to_cpu()
|
|
return self.session.run(None, inputs)
|
|
|
|
# compatability with diffusers load code
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls,
|
|
model_id: Union[str, Path],
|
|
subfolder: Optional[Union[str, Path]] = None,
|
|
file_name: Optional[str] = None,
|
|
provider: Optional[str] = None,
|
|
sess_options: Optional["SessionOptions"] = None,
|
|
**kwargs: Any,
|
|
) -> Any: # fixme
|
|
file_name = file_name or ONNX_WEIGHTS_NAME
|
|
|
|
if os.path.isdir(model_id):
|
|
model_path = model_id
|
|
if subfolder is not None:
|
|
model_path = os.path.join(model_path, subfolder)
|
|
model_path = os.path.join(model_path, file_name)
|
|
|
|
else:
|
|
model_path = model_id
|
|
|
|
# load model from local directory
|
|
if not os.path.isfile(model_path):
|
|
raise Exception(f"Model not found: {model_path}")
|
|
|
|
# TODO: session options
|
|
return cls(str(model_path), provider=provider)
|