InvokeAI/ldm/invoke/generator/txt2img2img.py

146 lines
6.1 KiB
Python

'''
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
'''
import math
from typing import Callable, Optional
import torch
from diffusers.utils.logging import get_verbosity, set_verbosity, set_verbosity_error
from ldm.invoke.generator.base import Generator
from ldm.invoke.generator.diffusers_pipeline import trim_to_multiple_of, StableDiffusionGeneratorPipeline, \
ConditioningData
from ldm.models.diffusion.shared_invokeai_diffusion import ThresholdSettings
class Txt2Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # for get_noise()
def get_make_image(self, prompt:str, sampler, steps:int, cfg_scale:float, ddim_eta,
conditioning, width:int, height:int, strength:float,
step_callback:Optional[Callable]=None, threshold=0.0, **kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
conditioning_data = (
ConditioningData(
uc, c, cfg_scale, extra_conditioning_info,
threshold = ThresholdSettings(threshold, warmup=0.2) if threshold else None)
.add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
def make_image(x_T):
first_pass_latent_output, _ = pipeline.latents_from_embeddings(
latents=torch.zeros_like(x_T),
num_inference_steps=steps,
conditioning_data=conditioning_data,
noise=x_T,
callback=step_callback,
# TODO: threshold = threshold,
)
# Get our initial generation width and height directly from the latent output so
# the message below is accurate.
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
print(
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
# resizing
resized_latents = torch.nn.functional.interpolate(
first_pass_latent_output,
size=(height // self.downsampling_factor, width // self.downsampling_factor),
mode="bilinear"
)
# Free up memory from the last generation.
clear_cuda_cache = kwargs['clear_cuda_cache'] or None
if clear_cuda_cache is not None:
clear_cuda_cache()
second_pass_noise = self.get_noise_like(resized_latents)
verbosity = get_verbosity()
set_verbosity_error()
pipeline_output = pipeline.img2img_from_latents_and_embeddings(
resized_latents,
num_inference_steps=steps,
conditioning_data=conditioning_data,
strength=strength,
noise=second_pass_noise,
callback=step_callback)
set_verbosity(verbosity)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
# FIXME: do we really need something entirely different for the inpainting model?
# in the case of the inpainting model being loaded, the trick of
# providing an interpolated latent doesn't work, so we transiently
# create a 512x512 PIL image, upscale it, and run the inpainting
# over it in img2img mode. Because the inpaing model is so conservative
# it doesn't change the image (much)
return make_image
def get_noise_like(self, like: torch.Tensor):
device = like.device
if device.type == 'mps':
x = torch.randn_like(like, device='cpu', dtype=self.torch_dtype()).to(device)
else:
x = torch.randn_like(like, device=device, dtype=self.torch_dtype())
if self.perlin > 0.0:
shape = like.shape
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
return x
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height,scale = True):
# print(f"Get noise: {width}x{height}")
if scale:
# Scale the input width and height for the initial generation
# Make their area equivalent to the model's resolution area (e.g. 512*512 = 262144),
# while keeping the minimum dimension at least 0.5 * resolution (e.g. 512*0.5 = 256)
aspect = width / height
dimension = self.model.unet.config.sample_size * self.model.vae_scale_factor
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = trim_to_multiple_of(math.floor(init_width), math.floor(init_height))
else:
scaled_width = width
scaled_height = height
device = self.model.device
channels = self.latent_channels
if channels == 9:
channels = 4 # we don't really want noise for all the mask channels
shape = (1, channels,
scaled_height // self.downsampling_factor, scaled_width // self.downsampling_factor)
if self.use_mps_noise or device.type == 'mps':
return torch.randn(shape, dtype=self.torch_dtype(), device='cpu').to(device)
else:
return torch.randn(shape, dtype=self.torch_dtype(), device=device)