mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
291 lines
8.3 KiB
Python
291 lines
8.3 KiB
Python
import math
|
|
from inspect import isfunction
|
|
from typing import Callable, Optional
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange, repeat
|
|
from torch import einsum, nn
|
|
|
|
from .diffusion import InvokeAICrossAttentionMixin
|
|
from .diffusionmodules.util import checkpoint
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def uniq(arr):
|
|
return {el: True for el in arr}.keys()
|
|
|
|
|
|
def default(val, d):
|
|
if exists(val):
|
|
return val
|
|
return d() if isfunction(d) else d
|
|
|
|
|
|
def max_neg_value(t):
|
|
return -torch.finfo(t.dtype).max
|
|
|
|
|
|
def init_(tensor):
|
|
dim = tensor.shape[-1]
|
|
std = 1 / math.sqrt(dim)
|
|
tensor.uniform_(-std, std)
|
|
return tensor
|
|
|
|
|
|
# feedforward
|
|
class GEGLU(nn.Module):
|
|
def __init__(self, dim_in, dim_out):
|
|
super().__init__()
|
|
self.proj = nn.Linear(dim_in, dim_out * 2)
|
|
|
|
def forward(self, x):
|
|
x, gate = self.proj(x).chunk(2, dim=-1)
|
|
return x * F.gelu(gate)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
|
super().__init__()
|
|
inner_dim = int(dim * mult)
|
|
dim_out = default(dim_out, dim)
|
|
project_in = (
|
|
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
|
if not glu
|
|
else GEGLU(dim, inner_dim)
|
|
)
|
|
|
|
self.net = nn.Sequential(
|
|
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
def zero_module(module):
|
|
"""
|
|
Zero out the parameters of a module and return it.
|
|
"""
|
|
for p in module.parameters():
|
|
p.detach().zero_()
|
|
return module
|
|
|
|
|
|
def Normalize(in_channels):
|
|
return torch.nn.GroupNorm(
|
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
|
)
|
|
|
|
|
|
class LinearAttention(nn.Module):
|
|
def __init__(self, dim, heads=4, dim_head=32):
|
|
super().__init__()
|
|
self.heads = heads
|
|
hidden_dim = dim_head * heads
|
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
|
|
|
def forward(self, x):
|
|
b, c, h, w = x.shape
|
|
qkv = self.to_qkv(x)
|
|
q, k, v = rearrange(
|
|
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
|
|
)
|
|
k = k.softmax(dim=-1)
|
|
context = torch.einsum("bhdn,bhen->bhde", k, v)
|
|
out = torch.einsum("bhde,bhdn->bhen", context, q)
|
|
out = rearrange(
|
|
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
|
|
)
|
|
return self.to_out(out)
|
|
|
|
|
|
class SpatialSelfAttention(nn.Module):
|
|
def __init__(self, in_channels):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = Normalize(in_channels)
|
|
self.q = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.k = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.v = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.proj_out = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
def forward(self, x):
|
|
h_ = x
|
|
h_ = self.norm(h_)
|
|
q = self.q(h_)
|
|
k = self.k(h_)
|
|
v = self.v(h_)
|
|
|
|
# compute attention
|
|
b, c, h, w = q.shape
|
|
q = rearrange(q, "b c h w -> b (h w) c")
|
|
k = rearrange(k, "b c h w -> b c (h w)")
|
|
w_ = torch.einsum("bij,bjk->bik", q, k)
|
|
|
|
w_ = w_ * (int(c) ** (-0.5))
|
|
w_ = torch.nn.functional.softmax(w_, dim=2)
|
|
|
|
# attend to values
|
|
v = rearrange(v, "b c h w -> b c (h w)")
|
|
w_ = rearrange(w_, "b i j -> b j i")
|
|
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
|
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
|
h_ = self.proj_out(h_)
|
|
|
|
return x + h_
|
|
|
|
|
|
def get_mem_free_total(device):
|
|
# only on cuda
|
|
if not torch.cuda.is_available():
|
|
return None
|
|
stats = torch.cuda.memory_stats(device)
|
|
mem_active = stats["active_bytes.all.current"]
|
|
mem_reserved = stats["reserved_bytes.all.current"]
|
|
mem_free_cuda, _ = torch.cuda.mem_get_info(device)
|
|
mem_free_torch = mem_reserved - mem_active
|
|
mem_free_total = mem_free_cuda + mem_free_torch
|
|
return mem_free_total
|
|
|
|
|
|
class CrossAttention(nn.Module, InvokeAICrossAttentionMixin):
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
|
super().__init__()
|
|
InvokeAICrossAttentionMixin.__init__(self)
|
|
inner_dim = dim_head * heads
|
|
context_dim = default(context_dim, query_dim)
|
|
|
|
self.scale = dim_head**-0.5
|
|
self.heads = heads
|
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
|
|
|
self.to_out = nn.Sequential(
|
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
|
)
|
|
|
|
def forward(self, x, context=None, mask=None):
|
|
h = self.heads
|
|
|
|
q = self.to_q(x)
|
|
context = default(context, x)
|
|
k = self.to_k(context) * self.scale
|
|
v = self.to_v(context)
|
|
del context, x
|
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
|
|
|
# don't apply scale twice
|
|
cached_scale = self.scale
|
|
self.scale = 1
|
|
r = self.get_invokeai_attention_mem_efficient(q, k, v)
|
|
self.scale = cached_scale
|
|
|
|
hidden_states = rearrange(r, "(b h) n d -> b n (h d)", h=h)
|
|
return self.to_out(hidden_states)
|
|
|
|
|
|
class BasicTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
n_heads,
|
|
d_head,
|
|
dropout=0.0,
|
|
context_dim=None,
|
|
gated_ff=True,
|
|
checkpoint=True,
|
|
):
|
|
super().__init__()
|
|
self.attn1 = CrossAttention(
|
|
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
|
) # is a self-attention
|
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
|
self.attn2 = CrossAttention(
|
|
query_dim=dim,
|
|
context_dim=context_dim,
|
|
heads=n_heads,
|
|
dim_head=d_head,
|
|
dropout=dropout,
|
|
) # is self-attn if context is none
|
|
self.norm1 = nn.LayerNorm(dim)
|
|
self.norm2 = nn.LayerNorm(dim)
|
|
self.norm3 = nn.LayerNorm(dim)
|
|
self.checkpoint = checkpoint
|
|
|
|
def forward(self, x, context=None):
|
|
return checkpoint(
|
|
self._forward, (x, context), self.parameters(), self.checkpoint
|
|
)
|
|
|
|
def _forward(self, x, context=None):
|
|
x = x.contiguous() if x.device.type == "mps" else x
|
|
x += self.attn1(self.norm1(x.clone()))
|
|
x += self.attn2(self.norm2(x.clone()), context=context)
|
|
x += self.ff(self.norm3(x.clone()))
|
|
return x
|
|
|
|
|
|
class SpatialTransformer(nn.Module):
|
|
"""
|
|
Transformer block for image-like data.
|
|
First, project the input (aka embedding)
|
|
and reshape to b, t, d.
|
|
Then apply standard transformer action.
|
|
Finally, reshape to image
|
|
"""
|
|
|
|
def __init__(
|
|
self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
inner_dim = n_heads * d_head
|
|
self.norm = Normalize(in_channels)
|
|
|
|
self.proj_in = nn.Conv2d(
|
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim
|
|
)
|
|
for d in range(depth)
|
|
]
|
|
)
|
|
|
|
self.proj_out = zero_module(
|
|
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
|
)
|
|
|
|
def forward(self, x, context=None):
|
|
# note: if no context is given, cross-attention defaults to self-attention
|
|
b, c, h, w = x.shape
|
|
x_in = x
|
|
x = self.norm(x)
|
|
x = self.proj_in(x)
|
|
x = rearrange(x, "b c h w -> b (h w) c")
|
|
for block in self.transformer_blocks:
|
|
x = block(x, context=context)
|
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
|
x = self.proj_out(x)
|
|
return x + x_in
|