InvokeAI/invokeai/backend/model_manager/metadata/fetch/huggingface.py
2024-03-05 23:50:19 +11:00

108 lines
3.8 KiB
Python

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
This module fetches model metadata objects from the HuggingFace model repository,
using either a `repo_id` or the model page URL.
Usage:
from invokeai.backend.model_manager.metadata.fetch import HuggingFaceMetadataFetch
fetcher = HuggingFaceMetadataFetch()
metadata = fetcher.from_url("https://huggingface.co/stabilityai/sdxl-turbo")
print(metadata.tags)
"""
import json
import re
from pathlib import Path
from typing import Optional
import requests
from huggingface_hub import HfApi, configure_http_backend, hf_hub_url
from huggingface_hub.utils._errors import RepositoryNotFoundError, RevisionNotFoundError
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session
from invokeai.backend.model_manager.config import ModelRepoVariant
from ..metadata_base import (
AnyModelRepoMetadata,
HuggingFaceMetadata,
RemoteModelFile,
UnknownMetadataException,
)
from .fetch_base import ModelMetadataFetchBase
HF_MODEL_RE = r"https?://huggingface.co/([\w\-.]+/[\w\-.]+)"
class HuggingFaceMetadataFetch(ModelMetadataFetchBase):
"""Fetch model metadata from HuggingFace."""
def __init__(self, session: Optional[Session] = None):
"""
Initialize the fetcher with an optional requests.sessions.Session object.
By providing a configurable Session object, we can support unit tests on
this module without an internet connection.
"""
self._requests = session or requests.Session()
configure_http_backend(backend_factory=lambda: self._requests)
@classmethod
def from_json(cls, json: str) -> HuggingFaceMetadata:
"""Given the JSON representation of the metadata, return the corresponding Pydantic object."""
metadata = HuggingFaceMetadata.model_validate_json(json)
return metadata
def from_id(self, id: str, variant: Optional[ModelRepoVariant] = None) -> AnyModelRepoMetadata:
"""Return a HuggingFaceMetadata object given the model's repo_id."""
# Little loop which tries fetching a revision corresponding to the selected variant.
# If not available, then set variant to None and get the default.
# If this too fails, raise exception.
model_info = None
while not model_info:
try:
model_info = HfApi().model_info(repo_id=id, files_metadata=True, revision=variant)
except RepositoryNotFoundError as excp:
raise UnknownMetadataException(f"'{id}' not found. See trace for details.") from excp
except RevisionNotFoundError:
if variant is None:
raise
else:
variant = None
files: list[RemoteModelFile] = []
_, name = id.split("/")
for s in model_info.siblings or []:
assert s.rfilename is not None
assert s.size is not None
files.append(
RemoteModelFile(
url=hf_hub_url(id, s.rfilename, revision=variant),
path=Path(name, s.rfilename),
size=s.size,
sha256=s.lfs.get("sha256") if s.lfs else None,
)
)
return HuggingFaceMetadata(
id=model_info.id, name=name, files=files, api_response=json.dumps(model_info.__dict__)
)
def from_url(self, url: AnyHttpUrl) -> AnyModelRepoMetadata:
"""
Return a HuggingFaceMetadata object given the model's web page URL.
In the case of an invalid or missing URL, raises a ModelNotFound exception.
"""
if match := re.match(HF_MODEL_RE, str(url), re.IGNORECASE):
repo_id = match.group(1)
return self.from_id(repo_id)
else:
raise UnknownMetadataException(f"'{url}' does not look like a HuggingFace model page")