InvokeAI/invokeai/app/invocations/primitives.py
psychedelicious c48fd9c083 feat(nodes): refactor parameter/primitive nodes
Refine concept of "parameter" nodes to "primitives":
- integer
- float
- string
- boolean
- image
- latents
- conditioning
- color

Each primitive has:
- A field definition, if it is not already python primitive value. The field is how this primitive value is passed between nodes. Collections are lists of the field in node definitions. ex: `ImageField` & `list[ImageField]`
- A single output class. ex: `ImageOutput`
- A collection output class. ex: `ImageCollectionOutput`
- A node, which functions to load or pass on the primitive value. ex: `ImageInvocation` (in this case, `ImageInvocation` replaces `LoadImage`)

Plus a number of related changes:
- Reorganize these into `primitives.py`
- Update all nodes and logic to use primitives
- Consolidate "prompt" outputs into "string" & "mask" into "image" (there's no reason for these to be different, the function identically)
- Update default graphs & tests
- Regen frontend types & minor frontend tidy related to changes
2023-08-16 09:54:38 +10:00

382 lines
10 KiB
Python

# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional, Tuple
from pydantic import BaseModel, Field
import torch
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
UITypeHint,
tags,
title,
)
"""
Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color
- primitive nodes
- primitive outputs
- primitive collection outputs
"""
# region Boolean
class BooleanOutput(BaseInvocationOutput):
"""Base class for nodes that output a single boolean"""
type: Literal["boolean_output"] = "boolean_output"
a: bool = OutputField(description="The output boolean")
class BooleanCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of booleans"""
type: Literal["boolean_collection_output"] = "boolean_collection_output"
# Outputs
collection: list[bool] = OutputField(
default_factory=list, description="The output boolean collection", ui_type_hint=UITypeHint.BooleanCollection
)
@title("Boolean Primitive")
@tags("boolean")
class BooleanInvocation(BaseInvocation):
"""A boolean primitive value"""
type: Literal["boolean"] = "boolean"
# Inputs
a: bool = InputField(default=False, description="The boolean value")
def invoke(self, context: InvocationContext) -> BooleanOutput:
return BooleanOutput(a=self.a)
# endregion
# region Integer
class IntegerOutput(BaseInvocationOutput):
"""Base class for nodes that output a single integer"""
type: Literal["integer_output"] = "integer_output"
a: int = OutputField(description="The output integer")
class IntegerCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of integers"""
type: Literal["integer_collection_output"] = "integer_collection_output"
# Outputs
collection: list[int] = OutputField(
default_factory=list, description="The int collection", ui_type_hint=UITypeHint.IntegerCollection
)
@title("Integer Primitive")
@tags("integer")
class IntegerInvocation(BaseInvocation):
"""An integer primitive value"""
type: Literal["integer"] = "integer"
# Inputs
a: int = InputField(default=0, description="The integer value")
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(a=self.a)
# endregion
# region Float
class FloatOutput(BaseInvocationOutput):
"""Base class for nodes that output a single float"""
type: Literal["float_output"] = "float_output"
a: float = OutputField(description="The output float")
class FloatCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of floats"""
type: Literal["float_collection_output"] = "float_collection_output"
# Outputs
collection: list[float] = OutputField(
default_factory=list, description="The float collection", ui_type_hint=UITypeHint.FloatCollection
)
@title("Float Primitive")
@tags("float")
class FloatInvocation(BaseInvocation):
"""A float primitive value"""
type: Literal["float"] = "float"
# Inputs
param: float = InputField(default=0.0, description="The float value")
def invoke(self, context: InvocationContext) -> FloatOutput:
return FloatOutput(a=self.param)
# endregion
# region String
class StringOutput(BaseInvocationOutput):
"""Base class for nodes that output a single string"""
type: Literal["string_output"] = "string_output"
text: str = OutputField(description="The output string")
class StringCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of strings"""
type: Literal["string_collection_output"] = "string_collection_output"
# Outputs
collection: list[str] = OutputField(
default_factory=list, description="The output strings", ui_type_hint=UITypeHint.StringCollection
)
@title("String Primitive")
@tags("string")
class StringInvocation(BaseInvocation):
"""A string primitive value"""
type: Literal["string"] = "string"
# Inputs
text: str = InputField(default="", description="The string value", ui_component=UIComponent.Textarea)
def invoke(self, context: InvocationContext) -> StringOutput:
return StringOutput(text=self.text)
# endregion
# region Image
class ImageField(BaseModel):
"""An image primitive field"""
image_name: str = Field(description="The name of the image")
class ImageOutput(BaseInvocationOutput):
"""Base class for nodes that output a single image"""
type: Literal["image_output"] = "image_output"
image: ImageField = OutputField(description="The output image")
width: int = OutputField(description="The width of the image in pixels")
height: int = OutputField(description="The height of the image in pixels")
class ImageCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of images"""
type: Literal["image_collection_output"] = "image_collection_output"
# Outputs
collection: list[ImageField] = OutputField(
default_factory=list, description="The output images", ui_type_hint=UITypeHint.ImageCollection
)
@title("Image Primitive")
@tags("image")
class ImageInvocation(BaseInvocation):
"""An image primitive value"""
# Metadata
type: Literal["image"] = "image"
# Inputs
image: ImageField = InputField(description="The image to load")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
# endregion
# region Latents
class LatentsField(BaseModel):
"""A latents tensor primitive field"""
latents_name: str = Field(description="The name of the latents")
seed: Optional[int] = Field(default=None, description="Seed used to generate this latents")
class LatentsOutput(BaseInvocationOutput):
"""Base class for nodes that output a single latents tensor"""
type: Literal["latents_output"] = "latents_output"
latents: LatentsField = OutputField(
description=FieldDescriptions.latents,
)
width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height)
class LatentsCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of latents tensors"""
type: Literal["latents_collection_output"] = "latents_collection_output"
latents: list[LatentsField] = OutputField(
default_factory=list,
description=FieldDescriptions.latents,
ui_type_hint=UITypeHint.LatentsCollection,
)
@title("Latents Primitive")
@tags("latents")
class LatentsInvocation(BaseInvocation):
"""A latents tensor primitive value"""
type: Literal["latents"] = "latents"
# Inputs
latents: LatentsField = InputField(description="The latents tensor", input=Input.Connection)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
return build_latents_output(self.latents.latents_name, latents)
def build_latents_output(latents_name: str, latents: torch.Tensor, seed: Optional[int] = None):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
# endregion
# region Color
class ColorField(BaseModel):
"""A color primitive field"""
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ColorOutput(BaseInvocationOutput):
"""Base class for nodes that output a single color"""
type: Literal["color_output"] = "color_output"
color: ColorField = OutputField(description="The output color")
class ColorCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of colors"""
type: Literal["color_collection_output"] = "color_collection_output"
# Outputs
collection: list[ColorField] = OutputField(
default_factory=list, description="The output colors", ui_type_hint=UITypeHint.ColorCollection
)
@title("Color Primitive")
@tags("color")
class ColorInvocation(BaseInvocation):
"""A color primitive value"""
type: Literal["color"] = "color"
# Inputs
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=255), description="The color value")
def invoke(self, context: InvocationContext) -> ColorOutput:
return ColorOutput(color=self.color)
# endregion
# region Conditioning
class ConditioningField(BaseModel):
"""A conditioning tensor primitive field"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
type: Literal["conditioning_output"] = "conditioning_output"
conditioning: ConditioningField = OutputField(description=FieldDescriptions.cond)
class ConditioningCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of conditioning tensors"""
type: Literal["conditioning_collection_output"] = "conditioning_collection_output"
# Outputs
collection: list[ConditioningField] = OutputField(
default_factory=list,
description="The output conditioning tensors",
ui_type_hint=UITypeHint.ConditioningCollection,
)
@title("Conditioning Primitive")
@tags("conditioning")
class ConditioningInvocation(BaseInvocation):
"""A conditioning tensor primitive value"""
type: Literal["conditioning"] = "conditioning"
conditioning: ConditioningField = InputField(description=FieldDescriptions.cond, input=Input.Connection)
def invoke(self, context: InvocationContext) -> ConditioningOutput:
return ConditioningOutput(conditioning=self.conditioning)
# endregion