mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
9997fde144
This allows reliable distribution of the initial 'configs' directory with the Python package, and enables the configuration script to be running from anywhere, as long as the virtual environment is available on the sys.path
1140 lines
42 KiB
Python
1140 lines
42 KiB
Python
import os
|
|
import re
|
|
import sys
|
|
import shlex
|
|
import traceback
|
|
|
|
from ldm.invoke.globals import Globals
|
|
from ldm.generate import Generate
|
|
from ldm.invoke.prompt_parser import PromptParser
|
|
from ldm.invoke.readline import get_completer, Completer
|
|
from ldm.invoke.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png
|
|
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata
|
|
from ldm.invoke.image_util import make_grid
|
|
from ldm.invoke.log import write_log
|
|
from ldm.invoke.model_manager import ModelManager
|
|
from pathlib import Path
|
|
from argparse import Namespace
|
|
import pyparsing
|
|
import ldm.invoke
|
|
|
|
# global used in multiple functions (fix)
|
|
infile = None
|
|
|
|
def main():
|
|
"""Initialize command-line parsers and the diffusion model"""
|
|
global infile
|
|
|
|
opt = Args()
|
|
args = opt.parse_args()
|
|
if not args:
|
|
sys.exit(-1)
|
|
|
|
if args.laion400m:
|
|
print('--laion400m flag has been deprecated. Please use --model laion400m instead.')
|
|
sys.exit(-1)
|
|
if args.weights:
|
|
print('--weights argument has been deprecated. Please edit ./configs/models.yaml, and select the weights using --model instead.')
|
|
sys.exit(-1)
|
|
if args.max_loaded_models is not None:
|
|
if args.max_loaded_models <= 0:
|
|
print('--max_loaded_models must be >= 1; using 1')
|
|
args.max_loaded_models = 1
|
|
|
|
# alert - setting a global here
|
|
Globals.try_patchmatch = args.patchmatch
|
|
Globals.always_use_cpu = args.always_use_cpu
|
|
Globals.internet_available = args.internet_available and check_internet()
|
|
Globals.disable_xformers = not args.xformers
|
|
print(f'>> Internet connectivity is {Globals.internet_available}')
|
|
|
|
if not args.conf:
|
|
if not os.path.exists(os.path.join(Globals.root,'configs','models.yaml')):
|
|
print(f"\n** Error. The file {os.path.join(Globals.root,'configs','models.yaml')} could not be found.")
|
|
print('** Please check the location of your invokeai directory and use the --root_dir option to point to the correct path.')
|
|
print('** This script will now exit.')
|
|
sys.exit(-1)
|
|
|
|
print(f'>> {ldm.invoke.__app_name__}, version {ldm.invoke.__version__}')
|
|
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
|
|
|
# loading here to avoid long delays on startup
|
|
from ldm.generate import Generate
|
|
|
|
# these two lines prevent a horrible warning message from appearing
|
|
# when the frozen CLIP tokenizer is imported
|
|
import transformers
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
# Loading Face Restoration and ESRGAN Modules
|
|
gfpgan,codeformer,esrgan = load_face_restoration(opt)
|
|
|
|
# normalize the config directory relative to root
|
|
if not os.path.isabs(opt.conf):
|
|
opt.conf = os.path.normpath(os.path.join(Globals.root,opt.conf))
|
|
|
|
if opt.embeddings:
|
|
if not os.path.isabs(opt.embedding_path):
|
|
embedding_path = os.path.normpath(os.path.join(Globals.root,opt.embedding_path))
|
|
else:
|
|
embedding_path = opt.embedding_path
|
|
else:
|
|
embedding_path = None
|
|
|
|
# migrate legacy models
|
|
ModelManager.migrate_models()
|
|
|
|
# load the infile as a list of lines
|
|
if opt.infile:
|
|
try:
|
|
if os.path.isfile(opt.infile):
|
|
infile = open(opt.infile, 'r', encoding='utf-8')
|
|
elif opt.infile == '-': # stdin
|
|
infile = sys.stdin
|
|
else:
|
|
raise FileNotFoundError(f'{opt.infile} not found.')
|
|
except (FileNotFoundError, IOError) as e:
|
|
print(f'{e}. Aborting.')
|
|
sys.exit(-1)
|
|
|
|
# creating a Generate object:
|
|
try:
|
|
gen = Generate(
|
|
conf = opt.conf,
|
|
model = opt.model,
|
|
sampler_name = opt.sampler_name,
|
|
embedding_path = embedding_path,
|
|
full_precision = opt.full_precision,
|
|
precision = opt.precision,
|
|
gfpgan=gfpgan,
|
|
codeformer=codeformer,
|
|
esrgan=esrgan,
|
|
free_gpu_mem=opt.free_gpu_mem,
|
|
safety_checker=opt.safety_checker,
|
|
max_loaded_models=opt.max_loaded_models,
|
|
)
|
|
except (FileNotFoundError, TypeError, AssertionError) as e:
|
|
report_model_error(opt,e)
|
|
except (IOError, KeyError) as e:
|
|
print(f'{e}. Aborting.')
|
|
sys.exit(-1)
|
|
|
|
if opt.seamless:
|
|
print(">> changed to seamless tiling mode")
|
|
|
|
# preload the model
|
|
try:
|
|
gen.load_model()
|
|
except KeyError:
|
|
pass
|
|
except Exception as e:
|
|
report_model_error(opt, e)
|
|
|
|
# try to autoconvert new models
|
|
# autoimport new .ckpt files
|
|
if path := opt.autoconvert:
|
|
gen.model_manager.autoconvert_weights(
|
|
conf_path=opt.conf,
|
|
weights_directory=path,
|
|
)
|
|
|
|
# web server loops forever
|
|
if opt.web or opt.gui:
|
|
invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan)
|
|
sys.exit(0)
|
|
|
|
if not infile:
|
|
print(
|
|
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)"
|
|
)
|
|
|
|
try:
|
|
main_loop(gen, opt)
|
|
except KeyboardInterrupt:
|
|
print(f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}')
|
|
except Exception:
|
|
print(">> An error occurred:")
|
|
traceback.print_exc()
|
|
|
|
# TODO: main_loop() has gotten busy. Needs to be refactored.
|
|
def main_loop(gen, opt):
|
|
"""prompt/read/execute loop"""
|
|
global infile
|
|
done = False
|
|
doneAfterInFile = infile is not None
|
|
path_filter = re.compile(r'[<>:"/\\|?*]')
|
|
last_results = list()
|
|
|
|
# The readline completer reads history from the .dream_history file located in the
|
|
# output directory specified at the time of script launch. We do not currently support
|
|
# changing the history file midstream when the output directory is changed.
|
|
completer = get_completer(opt, models=gen.model_manager.list_models())
|
|
set_default_output_dir(opt, completer)
|
|
if gen.model:
|
|
add_embedding_terms(gen, completer)
|
|
output_cntr = completer.get_current_history_length()+1
|
|
|
|
# os.pathconf is not available on Windows
|
|
if hasattr(os, 'pathconf'):
|
|
path_max = os.pathconf(opt.outdir, 'PC_PATH_MAX')
|
|
name_max = os.pathconf(opt.outdir, 'PC_NAME_MAX')
|
|
else:
|
|
path_max = 260
|
|
name_max = 255
|
|
|
|
while not done:
|
|
|
|
operation = 'generate'
|
|
|
|
try:
|
|
command = get_next_command(infile, gen.model_name)
|
|
except EOFError:
|
|
done = infile is None or doneAfterInFile
|
|
infile = None
|
|
continue
|
|
|
|
# skip empty lines
|
|
if not command.strip():
|
|
continue
|
|
|
|
if command.startswith(('#', '//')):
|
|
continue
|
|
|
|
if len(command.strip()) == 1 and command.startswith('q'):
|
|
done = True
|
|
break
|
|
|
|
if not command.startswith('!history'):
|
|
completer.add_history(command)
|
|
|
|
if command.startswith('!'):
|
|
command, operation = do_command(command, gen, opt, completer)
|
|
|
|
if operation is None:
|
|
continue
|
|
|
|
if opt.parse_cmd(command) is None:
|
|
continue
|
|
|
|
if opt.init_img:
|
|
try:
|
|
if not opt.prompt:
|
|
oldargs = metadata_from_png(opt.init_img)
|
|
opt.prompt = oldargs.prompt
|
|
print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
|
|
except (OSError, AttributeError, KeyError):
|
|
pass
|
|
|
|
if len(opt.prompt) == 0:
|
|
opt.prompt = ''
|
|
|
|
# width and height are set by model if not specified
|
|
if not opt.width:
|
|
opt.width = gen.width
|
|
if not opt.height:
|
|
opt.height = gen.height
|
|
|
|
# retrieve previous value of init image if requested
|
|
if opt.init_img is not None and re.match('^-\\d+$', opt.init_img):
|
|
try:
|
|
opt.init_img = last_results[int(opt.init_img)][0]
|
|
print(f'>> Reusing previous image {opt.init_img}')
|
|
except IndexError:
|
|
print(
|
|
f'>> No previous initial image at position {opt.init_img} found')
|
|
opt.init_img = None
|
|
continue
|
|
|
|
# the outdir can change with each command, so we adjust it here
|
|
set_default_output_dir(opt,completer)
|
|
|
|
# try to relativize pathnames
|
|
for attr in ('init_img','init_mask','init_color'):
|
|
if getattr(opt,attr) and not os.path.exists(getattr(opt,attr)):
|
|
basename = getattr(opt,attr)
|
|
path = os.path.join(opt.outdir,basename)
|
|
setattr(opt,attr,path)
|
|
|
|
# retrieve previous value of seed if requested
|
|
# Exception: for postprocess operations negative seed values
|
|
# mean "discard the original seed and generate a new one"
|
|
# (this is a non-obvious hack and needs to be reworked)
|
|
if opt.seed is not None and opt.seed < 0 and operation != 'postprocess':
|
|
try:
|
|
opt.seed = last_results[opt.seed][1]
|
|
print(f'>> Reusing previous seed {opt.seed}')
|
|
except IndexError:
|
|
print(f'>> No previous seed at position {opt.seed} found')
|
|
opt.seed = None
|
|
continue
|
|
|
|
if opt.strength is None:
|
|
opt.strength = 0.75 if opt.out_direction is None else 0.83
|
|
|
|
if opt.with_variations is not None:
|
|
opt.with_variations = split_variations(opt.with_variations)
|
|
|
|
if opt.prompt_as_dir and operation == 'generate':
|
|
# sanitize the prompt to a valid folder name
|
|
subdir = path_filter.sub('_', opt.prompt)[:name_max].rstrip(' .')
|
|
|
|
# truncate path to maximum allowed length
|
|
# 39 is the length of '######.##########.##########-##.png', plus two separators and a NUL
|
|
subdir = subdir[:(path_max - 39 - len(os.path.abspath(opt.outdir)))]
|
|
current_outdir = os.path.join(opt.outdir, subdir)
|
|
|
|
print('Writing files to directory: "' + current_outdir + '"')
|
|
|
|
# make sure the output directory exists
|
|
if not os.path.exists(current_outdir):
|
|
os.makedirs(current_outdir)
|
|
else:
|
|
if not os.path.exists(opt.outdir):
|
|
os.makedirs(opt.outdir)
|
|
current_outdir = opt.outdir
|
|
|
|
# Here is where the images are actually generated!
|
|
last_results = []
|
|
try:
|
|
file_writer = PngWriter(current_outdir)
|
|
results = [] # list of filename, prompt pairs
|
|
grid_images = dict() # seed -> Image, only used if `opt.grid`
|
|
prior_variations = opt.with_variations or []
|
|
prefix = file_writer.unique_prefix()
|
|
step_callback = make_step_callback(gen, opt, prefix) if opt.save_intermediates > 0 else None
|
|
|
|
def image_writer(image, seed, upscaled=False, first_seed=None, use_prefix=None, prompt_in=None, attention_maps_image=None):
|
|
# note the seed is the seed of the current image
|
|
# the first_seed is the original seed that noise is added to
|
|
# when the -v switch is used to generate variations
|
|
nonlocal prior_variations
|
|
nonlocal prefix
|
|
|
|
path = None
|
|
if opt.grid:
|
|
grid_images[seed] = image
|
|
|
|
elif operation == 'mask':
|
|
filename = f'{prefix}.{use_prefix}.{seed}.png'
|
|
tm = opt.text_mask[0]
|
|
th = opt.text_mask[1] if len(opt.text_mask)>1 else 0.5
|
|
formatted_dream_prompt = f'!mask {opt.input_file_path} -tm {tm} {th}'
|
|
path = file_writer.save_image_and_prompt_to_png(
|
|
image = image,
|
|
dream_prompt = formatted_dream_prompt,
|
|
metadata = {},
|
|
name = filename,
|
|
compress_level = opt.png_compression,
|
|
)
|
|
results.append([path, formatted_dream_prompt])
|
|
|
|
else:
|
|
if use_prefix is not None:
|
|
prefix = use_prefix
|
|
postprocessed = upscaled if upscaled else operation=='postprocess'
|
|
opt.prompt = gen.huggingface_concepts_library.replace_triggers_with_concepts(opt.prompt or prompt_in) # to avoid the problem of non-unique concept triggers
|
|
filename, formatted_dream_prompt = prepare_image_metadata(
|
|
opt,
|
|
prefix,
|
|
seed,
|
|
operation,
|
|
prior_variations,
|
|
postprocessed,
|
|
first_seed
|
|
)
|
|
path = file_writer.save_image_and_prompt_to_png(
|
|
image = image,
|
|
dream_prompt = formatted_dream_prompt,
|
|
metadata = metadata_dumps(
|
|
opt,
|
|
seeds = [seed if opt.variation_amount==0 and len(prior_variations)==0 else first_seed],
|
|
model_hash = gen.model_hash,
|
|
),
|
|
name = filename,
|
|
compress_level = opt.png_compression,
|
|
)
|
|
|
|
# update rfc metadata
|
|
if operation == 'postprocess':
|
|
tool = re.match('postprocess:(\w+)',opt.last_operation).groups()[0]
|
|
add_postprocessing_to_metadata(
|
|
opt,
|
|
opt.input_file_path,
|
|
filename,
|
|
tool,
|
|
formatted_dream_prompt,
|
|
)
|
|
|
|
if (not postprocessed) or opt.save_original:
|
|
# only append to results if we didn't overwrite an earlier output
|
|
results.append([path, formatted_dream_prompt])
|
|
|
|
# so that the seed autocompletes (on linux|mac when -S or --seed specified
|
|
if completer and operation == 'generate':
|
|
completer.add_seed(seed)
|
|
completer.add_seed(first_seed)
|
|
last_results.append([path, seed])
|
|
|
|
if operation == 'generate':
|
|
catch_ctrl_c = infile is None # if running interactively, we catch keyboard interrupts
|
|
opt.last_operation='generate'
|
|
try:
|
|
gen.prompt2image(
|
|
image_callback=image_writer,
|
|
step_callback=step_callback,
|
|
catch_interrupts=catch_ctrl_c,
|
|
**vars(opt)
|
|
)
|
|
except (PromptParser.ParsingException, pyparsing.ParseException) as e:
|
|
print('** An error occurred while processing your prompt **')
|
|
print(f'** {str(e)} **')
|
|
elif operation == 'postprocess':
|
|
print(f'>> fixing {opt.prompt}')
|
|
opt.last_operation = do_postprocess(gen,opt,image_writer)
|
|
|
|
elif operation == 'mask':
|
|
print(f'>> generating masks from {opt.prompt}')
|
|
do_textmask(gen, opt, image_writer)
|
|
|
|
if opt.grid and len(grid_images) > 0:
|
|
grid_img = make_grid(list(grid_images.values()))
|
|
grid_seeds = list(grid_images.keys())
|
|
first_seed = last_results[0][1]
|
|
filename = f'{prefix}.{first_seed}.png'
|
|
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,grid=True,iterations=len(grid_images))
|
|
formatted_dream_prompt += f' # {grid_seeds}'
|
|
metadata = metadata_dumps(
|
|
opt,
|
|
seeds = grid_seeds,
|
|
model_hash = gen.model_hash
|
|
)
|
|
path = file_writer.save_image_and_prompt_to_png(
|
|
image = grid_img,
|
|
dream_prompt = formatted_dream_prompt,
|
|
metadata = metadata,
|
|
name = filename
|
|
)
|
|
results = [[path, formatted_dream_prompt]]
|
|
|
|
except AssertionError as e:
|
|
print(e)
|
|
continue
|
|
|
|
except OSError as e:
|
|
print(e)
|
|
continue
|
|
|
|
print('Outputs:')
|
|
log_path = os.path.join(current_outdir, 'invoke_log')
|
|
output_cntr = write_log(results, log_path ,('txt', 'md'), output_cntr)
|
|
print()
|
|
|
|
|
|
print(f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}')
|
|
|
|
# TO DO: remove repetitive code and the awkward command.replace() trope
|
|
# Just do a simple parse of the command!
|
|
def do_command(command:str, gen, opt:Args, completer) -> tuple:
|
|
global infile
|
|
operation = 'generate' # default operation, alternative is 'postprocess'
|
|
|
|
if command.startswith('!dream'): # in case a stored prompt still contains the !dream command
|
|
command = command.replace('!dream ','',1)
|
|
|
|
elif command.startswith('!fix'):
|
|
command = command.replace('!fix ','',1)
|
|
operation = 'postprocess'
|
|
|
|
elif command.startswith('!mask'):
|
|
command = command.replace('!mask ','',1)
|
|
operation = 'mask'
|
|
|
|
elif command.startswith('!switch'):
|
|
model_name = command.replace('!switch ','',1)
|
|
try:
|
|
gen.set_model(model_name)
|
|
add_embedding_terms(gen, completer)
|
|
except KeyError as e:
|
|
print(str(e))
|
|
except Exception as e:
|
|
report_model_error(opt,e)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!models'):
|
|
gen.model_manager.print_models()
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!import'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1')
|
|
else:
|
|
import_model(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!convert'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide the path to a .ckpt or .safetensors model')
|
|
elif not os.path.exists(path[1]):
|
|
print(f'** {path[1]}: model not found')
|
|
else:
|
|
optimize_model(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
|
|
elif command.startswith('!optimize'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide an installed model name')
|
|
elif not path[1] in gen.model_manager.list_models():
|
|
print(f'** {path[1]}: model not found')
|
|
else:
|
|
optimize_model(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!edit'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide the name of a model')
|
|
else:
|
|
edit_model(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!del'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide the name of a model')
|
|
else:
|
|
del_config(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!fetch'):
|
|
file_path = command.replace('!fetch','',1).strip()
|
|
retrieve_dream_command(opt,file_path,completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!replay'):
|
|
file_path = command.replace('!replay','',1).strip()
|
|
if infile is None and os.path.isfile(file_path):
|
|
infile = open(file_path, 'r', encoding='utf-8')
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!history'):
|
|
completer.show_history()
|
|
operation = None
|
|
|
|
elif command.startswith('!search'):
|
|
search_str = command.replace('!search','',1).strip()
|
|
completer.show_history(search_str)
|
|
operation = None
|
|
|
|
elif command.startswith('!clear'):
|
|
completer.clear_history()
|
|
operation = None
|
|
|
|
elif re.match('^!(\d+)',command):
|
|
command_no = re.match('^!(\d+)',command).groups()[0]
|
|
command = completer.get_line(int(command_no))
|
|
completer.set_line(command)
|
|
operation = None
|
|
|
|
else: # not a recognized command, so give the --help text
|
|
command = '-h'
|
|
return command, operation
|
|
|
|
def set_default_output_dir(opt:Args, completer:Completer):
|
|
'''
|
|
If opt.outdir is relative, we add the root directory to it
|
|
normalize the outdir relative to root and make sure it exists.
|
|
'''
|
|
if not os.path.isabs(opt.outdir):
|
|
opt.outdir=os.path.normpath(os.path.join(Globals.root,opt.outdir))
|
|
if not os.path.exists(opt.outdir):
|
|
os.makedirs(opt.outdir)
|
|
completer.set_default_dir(opt.outdir)
|
|
|
|
|
|
def import_model(model_path:str, gen, opt, completer):
|
|
'''
|
|
model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path; or
|
|
(3) a huggingface repository id
|
|
'''
|
|
model_name = None
|
|
|
|
if model_path.startswith(('http:','https:','ftp:')):
|
|
model_name = import_ckpt_model(model_path, gen, opt, completer)
|
|
elif os.path.exists(model_path) and model_path.endswith(('.ckpt','.safetensors')) and os.path.isfile(model_path):
|
|
model_name = import_ckpt_model(model_path, gen, opt, completer)
|
|
elif re.match('^[\w.+-]+/[\w.+-]+$',model_path):
|
|
model_name = import_diffuser_model(model_path, gen, opt, completer)
|
|
elif os.path.isdir(model_path):
|
|
model_name = import_diffuser_model(Path(model_path), gen, opt, completer)
|
|
else:
|
|
print(f'** {model_path} is neither the path to a .ckpt file nor a diffusers repository id. Can\'t import.')
|
|
|
|
if not model_name:
|
|
return
|
|
|
|
if not _verify_load(model_name, gen):
|
|
print('** model failed to load. Discarding configuration entry')
|
|
gen.model_manager.del_model(model_name)
|
|
return
|
|
if input('Make this the default model? [n] ').strip() in ('y','Y'):
|
|
gen.model_manager.set_default_model(model_name)
|
|
|
|
gen.model_manager.commit(opt.conf)
|
|
completer.update_models(gen.model_manager.list_models())
|
|
print(f'>> {model_name} successfully installed')
|
|
|
|
def import_diffuser_model(path_or_repo:str, gen, opt, completer)->str:
|
|
manager = gen.model_manager
|
|
default_name = Path(path_or_repo).stem
|
|
default_description = f'Imported model {default_name}'
|
|
model_name, model_description = _get_model_name_and_desc(
|
|
manager,
|
|
completer,
|
|
model_name=default_name,
|
|
model_description=default_description
|
|
)
|
|
vae = None
|
|
if input('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"? [n] ').strip() in ('y','Y'):
|
|
vae = dict(repo_id='stabilityai/sd-vae-ft-mse')
|
|
|
|
if not manager.import_diffuser_model(
|
|
path_or_repo,
|
|
model_name = model_name,
|
|
vae = vae,
|
|
description = model_description):
|
|
print('** model failed to import')
|
|
return None
|
|
return model_name
|
|
|
|
def import_ckpt_model(path_or_url:str, gen, opt, completer)->str:
|
|
manager = gen.model_manager
|
|
default_name = Path(path_or_url).stem
|
|
default_description = f'Imported model {default_name}'
|
|
model_name, model_description = _get_model_name_and_desc(
|
|
manager,
|
|
completer,
|
|
model_name=default_name,
|
|
model_description=default_description
|
|
)
|
|
config_file = None
|
|
default = Path(Globals.root,'configs/stable-diffusion/v1-inference.yaml')
|
|
|
|
completer.complete_extensions(('.yaml','.yml'))
|
|
completer.set_line(str(default))
|
|
done = False
|
|
while not done:
|
|
config_file = input('Configuration file for this model: ').strip()
|
|
done = os.path.exists(config_file)
|
|
|
|
completer.complete_extensions(('.ckpt','.safetensors'))
|
|
vae = None
|
|
default = Path(Globals.root,'models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt')
|
|
completer.set_line(str(default))
|
|
done = False
|
|
while not done:
|
|
vae = input('VAE file for this model (leave blank for none): ').strip() or None
|
|
done = (not vae) or os.path.exists(vae)
|
|
completer.complete_extensions(None)
|
|
|
|
if not manager.import_ckpt_model(
|
|
path_or_url,
|
|
config = config_file,
|
|
vae = vae,
|
|
model_name = model_name,
|
|
model_description = model_description,
|
|
commit_to_conf = opt.conf,
|
|
):
|
|
print('** model failed to import')
|
|
return None
|
|
|
|
return model_name
|
|
|
|
def _verify_load(model_name:str, gen)->bool:
|
|
print('>> Verifying that new model loads...')
|
|
current_model = gen.model_name
|
|
if not gen.model_manager.get_model(model_name):
|
|
return False
|
|
do_switch = input('Keep model loaded? [y] ')
|
|
if len(do_switch)==0 or do_switch[0] in ('y','Y'):
|
|
gen.set_model(model_name)
|
|
else:
|
|
print('>> Restoring previous model')
|
|
gen.set_model(current_model)
|
|
return True
|
|
|
|
def _get_model_name_and_desc(model_manager,completer,model_name:str='',model_description:str=''):
|
|
model_name = _get_model_name(model_manager.list_models(),completer,model_name)
|
|
completer.set_line(model_description)
|
|
model_description = input(f'Description for this model [{model_description}]: ').strip() or model_description
|
|
return model_name, model_description
|
|
|
|
def optimize_model(model_name_or_path:str, gen, opt, completer):
|
|
manager = gen.model_manager
|
|
ckpt_path = None
|
|
|
|
if (model_info := manager.model_info(model_name_or_path)):
|
|
if 'weights' in model_info:
|
|
ckpt_path = Path(model_info['weights'])
|
|
model_name = model_name_or_path
|
|
model_description = model_info['description']
|
|
else:
|
|
print(f'** {model_name_or_path} is not a legacy .ckpt weights file')
|
|
return
|
|
elif os.path.exists(model_name_or_path):
|
|
ckpt_path = Path(model_name_or_path)
|
|
model_name,model_description = _get_model_name_and_desc(
|
|
manager,
|
|
completer,
|
|
ckpt_path.stem,
|
|
f'Converted model {ckpt_path.stem}'
|
|
)
|
|
else:
|
|
print(f'** {model_name_or_path} is neither an existing model nor the path to a .ckpt file')
|
|
return
|
|
|
|
if not ckpt_path.is_absolute():
|
|
ckpt_path = Path(Globals.root,ckpt_path)
|
|
|
|
diffuser_path = Path(Globals.root, 'models',Globals.converted_ckpts_dir,model_name)
|
|
if diffuser_path.exists():
|
|
print(f'** {model_name_or_path} is already optimized. Will not overwrite. If this is an error, please remove the directory {diffuser_path} and try again.')
|
|
return
|
|
|
|
new_config = gen.model_manager.convert_and_import(
|
|
ckpt_path,
|
|
diffuser_path,
|
|
model_name=model_name,
|
|
model_description=model_description,
|
|
commit_to_conf=opt.conf,
|
|
)
|
|
if not new_config:
|
|
return
|
|
|
|
completer.update_models(gen.model_manager.list_models())
|
|
if input(f'Load optimized model {model_name}? [y] ').strip() not in ('n','N'):
|
|
gen.set_model(model_name)
|
|
|
|
response = input(f'Delete the original .ckpt file at ({ckpt_path} ? [n] ')
|
|
if response.startswith(('y','Y')):
|
|
ckpt_path.unlink(missing_ok=True)
|
|
print(f'{ckpt_path} deleted')
|
|
|
|
def del_config(model_name:str, gen, opt, completer):
|
|
current_model = gen.model_name
|
|
if model_name == current_model:
|
|
print("** Can't delete active model. !switch to another model first. **")
|
|
return
|
|
if model_name not in gen.model_manager.config:
|
|
print(f"** Unknown model {model_name}")
|
|
return
|
|
|
|
if input(f'Remove {model_name} from the list of models known to InvokeAI? [y] ').strip().startswith(('n','N')):
|
|
return
|
|
|
|
delete_completely = input('Completely remove the model file or directory from disk? [n] ').startswith(('y','Y'))
|
|
gen.model_manager.del_model(model_name,delete_files=delete_completely)
|
|
gen.model_manager.commit(opt.conf)
|
|
print(f'** {model_name} deleted')
|
|
completer.update_models(gen.model_manager.list_models())
|
|
|
|
def edit_model(model_name:str, gen, opt, completer):
|
|
manager = gen.model_manager
|
|
if not (info := manager.model_info(model_name)):
|
|
print(f'** Unknown model {model_name}')
|
|
return
|
|
|
|
print(f'\n>> Editing model {model_name} from configuration file {opt.conf}')
|
|
new_name = _get_model_name(manager.list_models(),completer,model_name)
|
|
|
|
for attribute in info.keys():
|
|
if type(info[attribute]) != str:
|
|
continue
|
|
if attribute == 'format':
|
|
continue
|
|
completer.set_line(info[attribute])
|
|
info[attribute] = input(f'{attribute}: ') or info[attribute]
|
|
|
|
if new_name != model_name:
|
|
manager.del_model(model_name)
|
|
|
|
# this does the update
|
|
manager.add_model(new_name, info, True)
|
|
|
|
if input('Make this the default model? [n] ').startswith(('y','Y')):
|
|
manager.set_default_model(new_name)
|
|
manager.commit(opt.conf)
|
|
completer.update_models(manager.list_models())
|
|
print('>> Model successfully updated')
|
|
|
|
def _get_model_name(existing_names,completer,default_name:str='')->str:
|
|
done = False
|
|
completer.set_line(default_name)
|
|
while not done:
|
|
model_name = input(f'Short name for this model [{default_name}]: ').strip()
|
|
if len(model_name)==0:
|
|
model_name = default_name
|
|
if not re.match('^[\w._+-]+$',model_name):
|
|
print('** model name must contain only words, digits and the characters "._+-" **')
|
|
elif model_name != default_name and model_name in existing_names:
|
|
print(f'** the name {model_name} is already in use. Pick another.')
|
|
else:
|
|
done = True
|
|
return model_name
|
|
|
|
|
|
def do_textmask(gen, opt, callback):
|
|
image_path = opt.prompt
|
|
if not os.path.exists(image_path):
|
|
image_path = os.path.join(opt.outdir,image_path)
|
|
assert os.path.exists(image_path), '** "{opt.prompt}" not found. Please enter the name of an existing image file to mask **'
|
|
assert opt.text_mask is not None and len(opt.text_mask) >= 1, '** Please provide a text mask with -tm **'
|
|
opt.input_file_path = image_path
|
|
tm = opt.text_mask[0]
|
|
threshold = float(opt.text_mask[1]) if len(opt.text_mask) > 1 else 0.5
|
|
gen.apply_textmask(
|
|
image_path = image_path,
|
|
prompt = tm,
|
|
threshold = threshold,
|
|
callback = callback,
|
|
)
|
|
|
|
def do_postprocess (gen, opt, callback):
|
|
file_path = opt.prompt # treat the prompt as the file pathname
|
|
if opt.new_prompt is not None:
|
|
opt.prompt = opt.new_prompt
|
|
else:
|
|
opt.prompt = None
|
|
|
|
if os.path.dirname(file_path) == '': #basename given
|
|
file_path = os.path.join(opt.outdir,file_path)
|
|
|
|
opt.input_file_path = file_path
|
|
|
|
tool=None
|
|
if opt.facetool_strength > 0:
|
|
tool = opt.facetool
|
|
elif opt.embiggen:
|
|
tool = 'embiggen'
|
|
elif opt.upscale:
|
|
tool = 'upscale'
|
|
elif opt.out_direction:
|
|
tool = 'outpaint'
|
|
elif opt.outcrop:
|
|
tool = 'outcrop'
|
|
opt.save_original = True # do not overwrite old image!
|
|
opt.last_operation = f'postprocess:{tool}'
|
|
try:
|
|
gen.apply_postprocessor(
|
|
image_path = file_path,
|
|
tool = tool,
|
|
facetool_strength = opt.facetool_strength,
|
|
codeformer_fidelity = opt.codeformer_fidelity,
|
|
save_original = opt.save_original,
|
|
upscale = opt.upscale,
|
|
out_direction = opt.out_direction,
|
|
outcrop = opt.outcrop,
|
|
callback = callback,
|
|
opt = opt,
|
|
)
|
|
except OSError:
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
print(f'** {file_path}: file could not be read')
|
|
return
|
|
except (KeyError, AttributeError):
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
return
|
|
return opt.last_operation
|
|
|
|
def add_postprocessing_to_metadata(opt,original_file,new_file,tool,command):
|
|
original_file = original_file if os.path.exists(original_file) else os.path.join(opt.outdir,original_file)
|
|
new_file = new_file if os.path.exists(new_file) else os.path.join(opt.outdir,new_file)
|
|
try:
|
|
meta = retrieve_metadata(original_file)['sd-metadata']
|
|
except AttributeError:
|
|
try:
|
|
meta = retrieve_metadata(new_file)['sd-metadata']
|
|
except AttributeError:
|
|
meta = {}
|
|
|
|
if 'image' not in meta:
|
|
meta = metadata_dumps(opt,seeds=[opt.seed])['image']
|
|
meta['image'] = {}
|
|
img_data = meta.get('image')
|
|
pp = img_data.get('postprocessing',[]) or []
|
|
pp.append(
|
|
{
|
|
'tool':tool,
|
|
'dream_command':command,
|
|
}
|
|
)
|
|
meta['image']['postprocessing'] = pp
|
|
write_metadata(new_file,meta)
|
|
|
|
def prepare_image_metadata(
|
|
opt,
|
|
prefix,
|
|
seed,
|
|
operation='generate',
|
|
prior_variations=[],
|
|
postprocessed=False,
|
|
first_seed=None
|
|
):
|
|
|
|
if postprocessed and opt.save_original:
|
|
filename = choose_postprocess_name(opt,prefix,seed)
|
|
else:
|
|
wildcards = dict(opt.__dict__)
|
|
wildcards['prefix'] = prefix
|
|
wildcards['seed'] = seed
|
|
try:
|
|
filename = opt.fnformat.format(**wildcards)
|
|
except KeyError as e:
|
|
print(f'** The filename format contains an unknown key \'{e.args[0]}\'. Will use {{prefix}}.{{seed}}.png\' instead')
|
|
filename = f'{prefix}.{seed}.png'
|
|
except IndexError:
|
|
print(f'** The filename format is broken or complete. Will use \'{{prefix}}.{{seed}}.png\' instead')
|
|
filename = f'{prefix}.{seed}.png'
|
|
|
|
if opt.variation_amount > 0:
|
|
first_seed = first_seed or seed
|
|
this_variation = [[seed, opt.variation_amount]]
|
|
opt.with_variations = prior_variations + this_variation
|
|
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
|
|
elif len(prior_variations) > 0:
|
|
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
|
|
elif operation == 'postprocess':
|
|
formatted_dream_prompt = '!fix '+opt.dream_prompt_str(seed=seed,prompt=opt.input_file_path)
|
|
else:
|
|
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
|
|
return filename,formatted_dream_prompt
|
|
|
|
def choose_postprocess_name(opt,prefix,seed) -> str:
|
|
match = re.search('postprocess:(\w+)',opt.last_operation)
|
|
if match:
|
|
modifier = match.group(1) # will look like "gfpgan", "upscale", "outpaint" or "embiggen"
|
|
else:
|
|
modifier = 'postprocessed'
|
|
|
|
counter = 0
|
|
filename = None
|
|
available = False
|
|
while not available:
|
|
if counter == 0:
|
|
filename = f'{prefix}.{seed}.{modifier}.png'
|
|
else:
|
|
filename = f'{prefix}.{seed}.{modifier}-{counter:02d}.png'
|
|
available = not os.path.exists(os.path.join(opt.outdir,filename))
|
|
counter += 1
|
|
return filename
|
|
|
|
def get_next_command(infile=None, model_name='no model') -> str: # command string
|
|
if infile is None:
|
|
command = input(f'({model_name}) invoke> ').strip()
|
|
else:
|
|
command = infile.readline()
|
|
if not command:
|
|
raise EOFError
|
|
else:
|
|
command = command.strip()
|
|
if len(command)>0:
|
|
print(f'#{command}')
|
|
return command
|
|
|
|
def invoke_ai_web_server_loop(gen: Generate, gfpgan, codeformer, esrgan):
|
|
print('\n* --web was specified, starting web server...')
|
|
from backend.invoke_ai_web_server import InvokeAIWebServer
|
|
# Change working directory to the stable-diffusion directory
|
|
os.chdir(
|
|
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
|
)
|
|
|
|
invoke_ai_web_server = InvokeAIWebServer(generate=gen, gfpgan=gfpgan, codeformer=codeformer, esrgan=esrgan)
|
|
|
|
try:
|
|
invoke_ai_web_server.run()
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
def add_embedding_terms(gen,completer):
|
|
'''
|
|
Called after setting the model, updates the autocompleter with
|
|
any terms loaded by the embedding manager.
|
|
'''
|
|
trigger_strings = gen.model.textual_inversion_manager.get_all_trigger_strings()
|
|
completer.add_embedding_terms(trigger_strings)
|
|
|
|
def split_variations(variations_string) -> list:
|
|
# shotgun parsing, woo
|
|
parts = []
|
|
broken = False # python doesn't have labeled loops...
|
|
for part in variations_string.split(','):
|
|
seed_and_weight = part.split(':')
|
|
if len(seed_and_weight) != 2:
|
|
print(f'** Could not parse with_variation part "{part}"')
|
|
broken = True
|
|
break
|
|
try:
|
|
seed = int(seed_and_weight[0])
|
|
weight = float(seed_and_weight[1])
|
|
except ValueError:
|
|
print(f'** Could not parse with_variation part "{part}"')
|
|
broken = True
|
|
break
|
|
parts.append([seed, weight])
|
|
if broken:
|
|
return None
|
|
elif len(parts) == 0:
|
|
return None
|
|
else:
|
|
return parts
|
|
|
|
def load_face_restoration(opt):
|
|
try:
|
|
gfpgan, codeformer, esrgan = None, None, None
|
|
if opt.restore or opt.esrgan:
|
|
from ldm.invoke.restoration import Restoration
|
|
restoration = Restoration()
|
|
if opt.restore:
|
|
gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_model_path)
|
|
else:
|
|
print('>> Face restoration disabled')
|
|
if opt.esrgan:
|
|
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
|
|
else:
|
|
print('>> Upscaling disabled')
|
|
else:
|
|
print('>> Face restoration and upscaling disabled')
|
|
except (ModuleNotFoundError, ImportError):
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
|
|
return gfpgan,codeformer,esrgan
|
|
|
|
def make_step_callback(gen, opt, prefix):
|
|
destination = os.path.join(opt.outdir,'intermediates',prefix)
|
|
os.makedirs(destination,exist_ok=True)
|
|
print(f'>> Intermediate images will be written into {destination}')
|
|
def callback(img, step):
|
|
if step % opt.save_intermediates == 0 or step == opt.steps-1:
|
|
filename = os.path.join(destination,f'{step:04}.png')
|
|
image = gen.sample_to_image(img)
|
|
image.save(filename,'PNG')
|
|
return callback
|
|
|
|
def retrieve_dream_command(opt,command,completer):
|
|
'''
|
|
Given a full or partial path to a previously-generated image file,
|
|
will retrieve and format the dream command used to generate the image,
|
|
and pop it into the readline buffer (linux, Mac), or print out a comment
|
|
for cut-and-paste (windows)
|
|
|
|
Given a wildcard path to a folder with image png files,
|
|
will retrieve and format the dream command used to generate the images,
|
|
and save them to a file commands.txt for further processing
|
|
'''
|
|
if len(command) == 0:
|
|
return
|
|
|
|
tokens = command.split()
|
|
dir,basename = os.path.split(tokens[0])
|
|
if len(dir) == 0:
|
|
path = os.path.join(opt.outdir,basename)
|
|
else:
|
|
path = tokens[0]
|
|
|
|
if len(tokens) > 1:
|
|
return write_commands(opt, path, tokens[1])
|
|
|
|
cmd = ''
|
|
try:
|
|
cmd = dream_cmd_from_png(path)
|
|
except OSError:
|
|
print(f'## {tokens[0]}: file could not be read')
|
|
except (KeyError, AttributeError, IndexError):
|
|
print(f'## {tokens[0]}: file has no metadata')
|
|
except:
|
|
print(f'## {tokens[0]}: file could not be processed')
|
|
if len(cmd)>0:
|
|
completer.set_line(cmd)
|
|
|
|
def write_commands(opt, file_path:str, outfilepath:str):
|
|
dir,basename = os.path.split(file_path)
|
|
try:
|
|
paths = sorted(list(Path(dir).glob(basename)))
|
|
except ValueError:
|
|
print(f'## "{basename}": unacceptable pattern')
|
|
return
|
|
|
|
commands = []
|
|
cmd = None
|
|
for path in paths:
|
|
try:
|
|
cmd = dream_cmd_from_png(path)
|
|
except (KeyError, AttributeError, IndexError):
|
|
print(f'## {path}: file has no metadata')
|
|
except:
|
|
print(f'## {path}: file could not be processed')
|
|
if cmd:
|
|
commands.append(f'# {path}')
|
|
commands.append(cmd)
|
|
if len(commands)>0:
|
|
dir,basename = os.path.split(outfilepath)
|
|
if len(dir)==0:
|
|
outfilepath = os.path.join(opt.outdir,basename)
|
|
with open(outfilepath, 'w', encoding='utf-8') as f:
|
|
f.write('\n'.join(commands))
|
|
print(f'>> File {outfilepath} with commands created')
|
|
|
|
def report_model_error(opt:Namespace, e:Exception):
|
|
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
|
print('** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models.')
|
|
response = input('Do you want to run configure_invokeai.py to select and/or reinstall models? [y] ')
|
|
if response.startswith(('n','N')):
|
|
return
|
|
|
|
print('configure_invokeai is launching....\n')
|
|
|
|
# Match arguments that were set on the CLI
|
|
# only the arguments accepted by the configuration script are parsed
|
|
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
|
|
config = ["--config", opt.conf] if opt.conf is not None else []
|
|
yes_to_all = os.environ.get('INVOKE_MODEL_RECONFIGURE')
|
|
previous_args = sys.argv
|
|
sys.argv = [ 'configure_invokeai' ]
|
|
sys.argv.extend(root_dir)
|
|
sys.argv.extend(config)
|
|
if yes_to_all is not None:
|
|
sys.argv.append(yes_to_all)
|
|
|
|
from ldm.invoke.config import configure_invokeai
|
|
configure_invokeai.main()
|
|
print('** InvokeAI will now restart')
|
|
sys.argv = previous_args
|
|
main() # would rather do a os.exec(), but doesn't exist?
|
|
sys.exit(0)
|
|
|
|
def check_internet()->bool:
|
|
'''
|
|
Return true if the internet is reachable.
|
|
It does this by pinging huggingface.co.
|
|
'''
|
|
import urllib.request
|
|
host = 'http://huggingface.co'
|
|
try:
|
|
urllib.request.urlopen(host,timeout=1)
|
|
return True
|
|
except:
|
|
return False
|