mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
957 lines
33 KiB
Python
Executable File
957 lines
33 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
# Before running stable-diffusion on an internet-isolated machine,
|
|
# run this script from one with internet connectivity. The
|
|
# two machines must share a common .cache directory.
|
|
#
|
|
# Coauthor: Kevin Turner http://github.com/keturn
|
|
#
|
|
import sys
|
|
import argparse
|
|
import io
|
|
import os
|
|
import psutil
|
|
import shutil
|
|
import textwrap
|
|
import torch
|
|
import traceback
|
|
import yaml
|
|
import warnings
|
|
from argparse import Namespace
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from shutil import get_terminal_size
|
|
from typing import get_type_hints, get_args, Any
|
|
from urllib import request
|
|
|
|
import npyscreen
|
|
import transformers
|
|
import omegaconf
|
|
from diffusers import AutoencoderKL
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from huggingface_hub import HfFolder
|
|
from huggingface_hub import login as hf_hub_login
|
|
from omegaconf import OmegaConf
|
|
from tqdm import tqdm
|
|
from transformers import (
|
|
CLIPTextModel,
|
|
CLIPTextConfig,
|
|
CLIPTokenizer,
|
|
AutoFeatureExtractor,
|
|
BertTokenizerFast,
|
|
)
|
|
import invokeai.configs as configs
|
|
|
|
from invokeai.app.services.config import (
|
|
InvokeAIAppConfig,
|
|
)
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
|
|
|
|
# TO DO - Move all the frontend code into invokeai.frontend.install
|
|
from invokeai.frontend.install.widgets import (
|
|
SingleSelectColumnsSimple,
|
|
MultiSelectColumns,
|
|
CenteredButtonPress,
|
|
FileBox,
|
|
set_min_terminal_size,
|
|
CyclingForm,
|
|
MIN_COLS,
|
|
MIN_LINES,
|
|
WindowTooSmallException,
|
|
)
|
|
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
|
|
from invokeai.backend.install.model_install_backend import (
|
|
hf_download_from_pretrained,
|
|
InstallSelections,
|
|
ModelInstall,
|
|
)
|
|
from invokeai.backend.model_management.model_probe import ModelType, BaseModelType
|
|
from pydantic.error_wrappers import ValidationError
|
|
|
|
warnings.filterwarnings("ignore")
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
|
|
def get_literal_fields(field) -> list[Any]:
|
|
return get_args(get_type_hints(InvokeAIAppConfig).get(field))
|
|
|
|
|
|
# --------------------------globals-----------------------
|
|
|
|
config = InvokeAIAppConfig.get_config()
|
|
|
|
Model_dir = "models"
|
|
|
|
Default_config_file = config.model_conf_path
|
|
SD_Configs = config.legacy_conf_path
|
|
|
|
PRECISION_CHOICES = get_literal_fields("precision")
|
|
DEVICE_CHOICES = get_literal_fields("device")
|
|
ATTENTION_CHOICES = get_literal_fields("attention_type")
|
|
ATTENTION_SLICE_CHOICES = get_literal_fields("attention_slice_size")
|
|
GENERATION_OPT_CHOICES = ["sequential_guidance", "force_tiled_decode", "lazy_offload"]
|
|
GB = 1073741824 # GB in bytes
|
|
HAS_CUDA = torch.cuda.is_available()
|
|
_, MAX_VRAM = torch.cuda.mem_get_info() if HAS_CUDA else (0, 0)
|
|
|
|
|
|
MAX_VRAM /= GB
|
|
MAX_RAM = psutil.virtual_memory().total / GB
|
|
|
|
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
|
|
# This is the InvokeAI initialization file, which contains command-line default values.
|
|
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
|
|
# or renaming it and then running invokeai-configure again.
|
|
"""
|
|
|
|
logger = InvokeAILogger.getLogger()
|
|
|
|
|
|
class DummyWidgetValue(Enum):
|
|
zero = 0
|
|
true = True
|
|
false = False
|
|
|
|
|
|
# --------------------------------------------
|
|
def postscript(errors: None):
|
|
if not any(errors):
|
|
message = f"""
|
|
** INVOKEAI INSTALLATION SUCCESSFUL **
|
|
If you installed manually from source or with 'pip install': activate the virtual environment
|
|
then run one of the following commands to start InvokeAI.
|
|
|
|
Web UI:
|
|
invokeai-web
|
|
|
|
Command-line client:
|
|
invokeai
|
|
|
|
If you installed using an installation script, run:
|
|
{config.root_path}/invoke.{"bat" if sys.platform == "win32" else "sh"}
|
|
|
|
Add the '--help' argument to see all of the command-line switches available for use.
|
|
"""
|
|
|
|
else:
|
|
message = (
|
|
"\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
|
|
)
|
|
for err in errors:
|
|
message += f"\t - {err}\n"
|
|
message += "Please check the logs above and correct any issues."
|
|
|
|
print(message)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def yes_or_no(prompt: str, default_yes=True):
|
|
default = "y" if default_yes else "n"
|
|
response = input(f"{prompt} [{default}] ") or default
|
|
if default_yes:
|
|
return response[0] not in ("n", "N")
|
|
else:
|
|
return response[0] in ("y", "Y")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def HfLogin(access_token) -> str:
|
|
"""
|
|
Helper for logging in to Huggingface
|
|
The stdout capture is needed to hide the irrelevant "git credential helper" warning
|
|
"""
|
|
|
|
capture = io.StringIO()
|
|
sys.stdout = capture
|
|
try:
|
|
hf_hub_login(token=access_token, add_to_git_credential=False)
|
|
sys.stdout = sys.__stdout__
|
|
except Exception as exc:
|
|
sys.stdout = sys.__stdout__
|
|
print(exc)
|
|
raise exc
|
|
|
|
|
|
# -------------------------------------
|
|
class ProgressBar:
|
|
def __init__(self, model_name="file"):
|
|
self.pbar = None
|
|
self.name = model_name
|
|
|
|
def __call__(self, block_num, block_size, total_size):
|
|
if not self.pbar:
|
|
self.pbar = tqdm(
|
|
desc=self.name,
|
|
initial=0,
|
|
unit="iB",
|
|
unit_scale=True,
|
|
unit_divisor=1000,
|
|
total=total_size,
|
|
)
|
|
self.pbar.update(block_size)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"):
|
|
try:
|
|
logger.info(f"Installing {label} model file {model_url}...")
|
|
if not os.path.exists(model_dest):
|
|
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
|
request.urlretrieve(model_url, model_dest, ProgressBar(os.path.basename(model_dest)))
|
|
logger.info("...downloaded successfully")
|
|
else:
|
|
logger.info("...exists")
|
|
except Exception:
|
|
logger.info("...download failed")
|
|
logger.info(f"Error downloading {label} model")
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
|
|
def download_conversion_models():
|
|
target_dir = config.models_path / "core/convert"
|
|
kwargs = dict() # for future use
|
|
try:
|
|
logger.info("Downloading core tokenizers and text encoders")
|
|
|
|
# bert
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs)
|
|
bert.save_pretrained(target_dir / "bert-base-uncased", safe_serialization=True)
|
|
|
|
# sd-1
|
|
repo_id = "openai/clip-vit-large-patch14"
|
|
hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / "clip-vit-large-patch14")
|
|
hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / "clip-vit-large-patch14")
|
|
|
|
# sd-2
|
|
repo_id = "stabilityai/stable-diffusion-2"
|
|
pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs)
|
|
pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "tokenizer", safe_serialization=True)
|
|
|
|
pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs)
|
|
pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "text_encoder", safe_serialization=True)
|
|
|
|
# sd-xl - tokenizer_2
|
|
repo_id = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
|
|
_, model_name = repo_id.split("/")
|
|
pipeline = CLIPTokenizer.from_pretrained(repo_id, **kwargs)
|
|
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
|
|
|
|
pipeline = CLIPTextConfig.from_pretrained(repo_id, **kwargs)
|
|
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
|
|
|
|
# VAE
|
|
logger.info("Downloading stable diffusion VAE")
|
|
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", **kwargs)
|
|
vae.save_pretrained(target_dir / "sd-vae-ft-mse", safe_serialization=True)
|
|
|
|
# safety checking
|
|
logger.info("Downloading safety checker")
|
|
repo_id = "CompVis/stable-diffusion-safety-checker"
|
|
pipeline = AutoFeatureExtractor.from_pretrained(repo_id, **kwargs)
|
|
pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
|
|
|
|
pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id, **kwargs)
|
|
pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
|
|
except KeyboardInterrupt:
|
|
raise
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_realesrgan():
|
|
logger.info("Installing ESRGAN Upscaling models...")
|
|
URLs = [
|
|
dict(
|
|
url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
|
dest="core/upscaling/realesrgan/RealESRGAN_x4plus.pth",
|
|
description="RealESRGAN_x4plus.pth",
|
|
),
|
|
dict(
|
|
url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
|
dest="core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth",
|
|
description="RealESRGAN_x4plus_anime_6B.pth",
|
|
),
|
|
dict(
|
|
url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
|
|
dest="core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
|
|
description="ESRGAN_SRx4_DF2KOST_official.pth",
|
|
),
|
|
dict(
|
|
url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
|
dest="core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
|
|
description="RealESRGAN_x2plus.pth",
|
|
),
|
|
]
|
|
for model in URLs:
|
|
download_with_progress_bar(model["url"], config.models_path / model["dest"], model["description"])
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_lama():
|
|
logger.info("Installing lama infill model")
|
|
download_with_progress_bar(
|
|
'https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt',
|
|
config.models_path / 'core/misc/lama/lama.pt',
|
|
'lama infill model'
|
|
)
|
|
|
|
# ---------------------------------------------
|
|
def download_support_models():
|
|
download_realesrgan()
|
|
download_lama()
|
|
download_conversion_models()
|
|
|
|
|
|
# -------------------------------------
|
|
def get_root(root: str = None) -> str:
|
|
if root:
|
|
return root
|
|
elif os.environ.get("INVOKEAI_ROOT"):
|
|
return os.environ.get("INVOKEAI_ROOT")
|
|
else:
|
|
return str(config.root_path)
|
|
|
|
|
|
# -------------------------------------
|
|
class editOptsForm(CyclingForm, npyscreen.FormMultiPage):
|
|
# for responsive resizing - disabled
|
|
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
|
|
|
|
def create(self):
|
|
program_opts = self.parentApp.program_opts
|
|
old_opts = self.parentApp.invokeai_opts
|
|
first_time = not (config.root_path / "invokeai.yaml").exists()
|
|
access_token = HfFolder.get_token()
|
|
window_width, window_height = get_terminal_size()
|
|
label = """Configure startup settings. You can come back and change these later.
|
|
Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.
|
|
Use cursor arrows to make a checkbox selection, and space to toggle.
|
|
"""
|
|
self.nextrely -= 1
|
|
for i in textwrap.wrap(label, width=window_width - 6):
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
|
|
self.nextrely += 1
|
|
label = """HuggingFace access token (OPTIONAL) for automatic model downloads. See https://huggingface.co/settings/tokens."""
|
|
for line in textwrap.wrap(label, width=window_width - 6):
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=line,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
|
|
self.hf_token = self.add_widget_intelligent(
|
|
npyscreen.TitlePassword,
|
|
name="Access Token (ctrl-shift-V pastes):",
|
|
value=access_token,
|
|
begin_entry_at=42,
|
|
use_two_lines=False,
|
|
scroll_exit=True,
|
|
)
|
|
|
|
# old settings for defaults
|
|
precision = old_opts.precision or ("float32" if program_opts.full_precision else "auto")
|
|
device = old_opts.device
|
|
attention_type = old_opts.attention_type
|
|
attention_slice_size = old_opts.attention_slice_size
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="Image Generation Options:",
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 2
|
|
self.generation_options = self.add_widget_intelligent(
|
|
MultiSelectColumns,
|
|
columns=3,
|
|
values=GENERATION_OPT_CHOICES,
|
|
value=[GENERATION_OPT_CHOICES.index(x) for x in GENERATION_OPT_CHOICES if getattr(old_opts, x)],
|
|
relx=30,
|
|
max_height=2,
|
|
max_width=80,
|
|
scroll_exit=True,
|
|
)
|
|
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="Floating Point Precision:",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 2
|
|
self.precision = self.add_widget_intelligent(
|
|
SingleSelectColumnsSimple,
|
|
columns=len(PRECISION_CHOICES),
|
|
name="Precision",
|
|
values=PRECISION_CHOICES,
|
|
value=PRECISION_CHOICES.index(precision),
|
|
begin_entry_at=3,
|
|
max_height=2,
|
|
relx=30,
|
|
max_width=56,
|
|
scroll_exit=True,
|
|
)
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="Generation Device:",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 2
|
|
self.device = self.add_widget_intelligent(
|
|
SingleSelectColumnsSimple,
|
|
columns=len(DEVICE_CHOICES),
|
|
values=DEVICE_CHOICES,
|
|
value=[DEVICE_CHOICES.index(device)],
|
|
begin_entry_at=3,
|
|
relx=30,
|
|
max_height=2,
|
|
max_width=60,
|
|
scroll_exit=True,
|
|
)
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="Attention Type:",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 2
|
|
self.attention_type = self.add_widget_intelligent(
|
|
SingleSelectColumnsSimple,
|
|
columns=len(ATTENTION_CHOICES),
|
|
values=ATTENTION_CHOICES,
|
|
value=[ATTENTION_CHOICES.index(attention_type)],
|
|
begin_entry_at=3,
|
|
max_height=2,
|
|
relx=30,
|
|
max_width=80,
|
|
scroll_exit=True,
|
|
)
|
|
self.attention_type.on_changed = self.show_hide_slice_sizes
|
|
self.attention_slice_label = self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="Attention Slice Size:",
|
|
relx=5,
|
|
editable=False,
|
|
hidden=attention_type != "sliced",
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 2
|
|
self.attention_slice_size = self.add_widget_intelligent(
|
|
SingleSelectColumnsSimple,
|
|
columns=len(ATTENTION_SLICE_CHOICES),
|
|
values=ATTENTION_SLICE_CHOICES,
|
|
value=[ATTENTION_SLICE_CHOICES.index(attention_slice_size)],
|
|
relx=30,
|
|
hidden=attention_type != "sliced",
|
|
max_height=2,
|
|
max_width=110,
|
|
scroll_exit=True,
|
|
)
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="Model RAM cache size (GB). Make this at least large enough to hold a single full model.",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.ram = self.add_widget_intelligent(
|
|
npyscreen.Slider,
|
|
value=clip(old_opts.ram_cache_size, range=(3.0, MAX_RAM), step=0.5),
|
|
out_of=round(MAX_RAM),
|
|
lowest=0.0,
|
|
step=0.5,
|
|
relx=8,
|
|
scroll_exit=True,
|
|
)
|
|
if HAS_CUDA:
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="Model VRAM cache size (GB). Reserving a small amount of VRAM will modestly speed up the start of image generation.",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.vram = self.add_widget_intelligent(
|
|
npyscreen.Slider,
|
|
value=clip(old_opts.vram_cache_size, range=(0, MAX_VRAM), step=0.25),
|
|
out_of=round(MAX_VRAM * 2) / 2,
|
|
lowest=0.0,
|
|
relx=8,
|
|
step=0.25,
|
|
scroll_exit=True,
|
|
)
|
|
else:
|
|
self.vram_cache_size = DummyWidgetValue.zero
|
|
self.nextrely += 1
|
|
self.outdir = self.add_widget_intelligent(
|
|
FileBox,
|
|
name="Output directory for images (<tab> autocompletes, ctrl-N advances):",
|
|
value=str(default_output_dir()),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=40,
|
|
max_height=3,
|
|
scroll_exit=True,
|
|
)
|
|
self.autoimport_dirs = {}
|
|
self.autoimport_dirs["autoimport_dir"] = self.add_widget_intelligent(
|
|
FileBox,
|
|
name="Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models",
|
|
value=str(config.root_path / config.autoimport_dir),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=32,
|
|
max_height=3,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
label = """BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ
|
|
AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSES LOCATED AT
|
|
https://huggingface.co/spaces/CompVis/stable-diffusion-license and
|
|
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md
|
|
"""
|
|
for i in textwrap.wrap(label, width=window_width - 6):
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.license_acceptance = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="I accept the CreativeML Responsible AI Licenses",
|
|
value=not first_time,
|
|
relx=2,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
label = "DONE" if program_opts.skip_sd_weights or program_opts.default_only else "NEXT"
|
|
self.ok_button = self.add_widget_intelligent(
|
|
CenteredButtonPress,
|
|
name=label,
|
|
relx=(window_width - len(label)) // 2,
|
|
when_pressed_function=self.on_ok,
|
|
)
|
|
|
|
def show_hide_slice_sizes(self, value):
|
|
show = ATTENTION_CHOICES[value[0]] == "sliced"
|
|
self.attention_slice_label.hidden = not show
|
|
self.attention_slice_size.hidden = not show
|
|
|
|
def on_ok(self):
|
|
options = self.marshall_arguments()
|
|
if self.validate_field_values(options):
|
|
self.parentApp.new_opts = options
|
|
if hasattr(self.parentApp, "model_select"):
|
|
self.parentApp.setNextForm("MODELS")
|
|
else:
|
|
self.parentApp.setNextForm(None)
|
|
self.editing = False
|
|
else:
|
|
self.editing = True
|
|
|
|
def validate_field_values(self, opt: Namespace) -> bool:
|
|
bad_fields = []
|
|
if not opt.license_acceptance:
|
|
bad_fields.append("Please accept the license terms before proceeding to model downloads")
|
|
if not Path(opt.outdir).parent.exists():
|
|
bad_fields.append(
|
|
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
|
|
)
|
|
if len(bad_fields) > 0:
|
|
message = "The following problems were detected and must be corrected:\n"
|
|
for problem in bad_fields:
|
|
message += f"* {problem}\n"
|
|
npyscreen.notify_confirm(message)
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
def marshall_arguments(self):
|
|
new_opts = Namespace()
|
|
|
|
for attr in [
|
|
"ram",
|
|
"vram",
|
|
"outdir",
|
|
]:
|
|
setattr(new_opts, attr, getattr(self, attr).value)
|
|
|
|
for attr in self.autoimport_dirs:
|
|
directory = Path(self.autoimport_dirs[attr].value)
|
|
if directory.is_relative_to(config.root_path):
|
|
directory = directory.relative_to(config.root_path)
|
|
setattr(new_opts, attr, directory)
|
|
|
|
new_opts.hf_token = self.hf_token.value
|
|
new_opts.license_acceptance = self.license_acceptance.value
|
|
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
|
|
new_opts.device = DEVICE_CHOICES[self.device.value[0]]
|
|
new_opts.attention_type = ATTENTION_CHOICES[self.attention_type.value[0]]
|
|
new_opts.attention_slice_size = ATTENTION_SLICE_CHOICES[self.attention_slice_size.value[0]]
|
|
generation_options = [GENERATION_OPT_CHOICES[x] for x in self.generation_options.value]
|
|
for v in GENERATION_OPT_CHOICES:
|
|
setattr(new_opts, v, v in generation_options)
|
|
|
|
return new_opts
|
|
|
|
|
|
class EditOptApplication(npyscreen.NPSAppManaged):
|
|
def __init__(self, program_opts: Namespace, invokeai_opts: Namespace):
|
|
super().__init__()
|
|
self.program_opts = program_opts
|
|
self.invokeai_opts = invokeai_opts
|
|
self.user_cancelled = False
|
|
self.autoload_pending = True
|
|
self.install_selections = default_user_selections(program_opts)
|
|
|
|
def onStart(self):
|
|
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
|
self.options = self.addForm(
|
|
"MAIN",
|
|
editOptsForm,
|
|
name="InvokeAI Startup Options",
|
|
cycle_widgets=False,
|
|
)
|
|
if not (self.program_opts.skip_sd_weights or self.program_opts.default_only):
|
|
self.model_select = self.addForm(
|
|
"MODELS",
|
|
addModelsForm,
|
|
name="Install Stable Diffusion Models",
|
|
multipage=True,
|
|
cycle_widgets=False,
|
|
)
|
|
|
|
def new_opts(self):
|
|
return self.options.marshall_arguments()
|
|
|
|
|
|
def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Namespace:
|
|
editApp = EditOptApplication(program_opts, invokeai_opts)
|
|
editApp.run()
|
|
return editApp.new_opts()
|
|
|
|
|
|
def default_startup_options(init_file: Path) -> Namespace:
|
|
opts = InvokeAIAppConfig.get_config()
|
|
return opts
|
|
|
|
|
|
def default_user_selections(program_opts: Namespace) -> InstallSelections:
|
|
try:
|
|
installer = ModelInstall(config)
|
|
except omegaconf.errors.ConfigKeyError:
|
|
logger.warning("Your models.yaml file is corrupt or out of date. Reinitializing")
|
|
initialize_rootdir(config.root_path, True)
|
|
installer = ModelInstall(config)
|
|
|
|
models = installer.all_models()
|
|
return InstallSelections(
|
|
install_models=[models[installer.default_model()].path or models[installer.default_model()].repo_id]
|
|
if program_opts.default_only
|
|
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
|
|
if program_opts.yes_to_all
|
|
else list(),
|
|
)
|
|
|
|
|
|
# -------------------------------------
|
|
def clip(value: float, range: tuple[float, float], step: float) -> float:
|
|
minimum, maximum = range
|
|
if value < minimum:
|
|
value = minimum
|
|
if value > maximum:
|
|
value = maximum
|
|
return round(value / step) * step
|
|
|
|
|
|
# -------------------------------------
|
|
def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
|
logger.info("Initializing InvokeAI runtime directory")
|
|
for name in ("models", "databases", "text-inversion-output", "text-inversion-training-data", "configs"):
|
|
os.makedirs(os.path.join(root, name), exist_ok=True)
|
|
for model_type in ModelType:
|
|
Path(root, "autoimport", model_type.value).mkdir(parents=True, exist_ok=True)
|
|
|
|
configs_src = Path(configs.__path__[0])
|
|
configs_dest = root / "configs"
|
|
if not os.path.samefile(configs_src, configs_dest):
|
|
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
|
|
|
dest = root / "models"
|
|
for model_base in BaseModelType:
|
|
for model_type in ModelType:
|
|
path = dest / model_base.value / model_type.value
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
path = dest / "core"
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
def maybe_create_models_yaml(root: Path):
|
|
models_yaml = root / "configs" / "models.yaml"
|
|
if models_yaml.exists():
|
|
if OmegaConf.load(models_yaml).get("__metadata__"): # up to date
|
|
return
|
|
else:
|
|
logger.info("Creating new models.yaml, original saved as models.yaml.orig")
|
|
models_yaml.rename(models_yaml.parent / "models.yaml.orig")
|
|
|
|
with open(models_yaml, "w") as yaml_file:
|
|
yaml_file.write(yaml.dump({"__metadata__": {"version": "3.0.0"}}))
|
|
|
|
|
|
# -------------------------------------
|
|
def run_console_ui(program_opts: Namespace, initfile: Path = None) -> (Namespace, Namespace):
|
|
invokeai_opts = default_startup_options(initfile)
|
|
invokeai_opts.root = program_opts.root
|
|
|
|
if not set_min_terminal_size(MIN_COLS, MIN_LINES):
|
|
raise WindowTooSmallException(
|
|
"Could not increase terminal size. Try running again with a larger window or smaller font size."
|
|
)
|
|
|
|
# the install-models application spawns a subprocess to install
|
|
# models, and will crash unless this is set before running.
|
|
import torch
|
|
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
|
|
editApp = EditOptApplication(program_opts, invokeai_opts)
|
|
editApp.run()
|
|
if editApp.user_cancelled:
|
|
return (None, None)
|
|
else:
|
|
return (editApp.new_opts, editApp.install_selections)
|
|
|
|
|
|
# -------------------------------------
|
|
def write_opts(opts: Namespace, init_file: Path):
|
|
"""
|
|
Update the invokeai.yaml file with values from current settings.
|
|
"""
|
|
# this will load current settings
|
|
new_config = InvokeAIAppConfig.get_config()
|
|
new_config.root = config.root
|
|
|
|
for key, value in opts.__dict__.items():
|
|
if hasattr(new_config, key):
|
|
setattr(new_config, key, value)
|
|
|
|
with open(init_file, "w", encoding="utf-8") as file:
|
|
file.write(new_config.to_yaml())
|
|
|
|
if hasattr(opts, "hf_token") and opts.hf_token:
|
|
HfLogin(opts.hf_token)
|
|
|
|
|
|
# -------------------------------------
|
|
def default_output_dir() -> Path:
|
|
return config.root_path / "outputs"
|
|
|
|
|
|
# -------------------------------------
|
|
def write_default_options(program_opts: Namespace, initfile: Path):
|
|
opt = default_startup_options(initfile)
|
|
write_opts(opt, initfile)
|
|
|
|
|
|
# -------------------------------------
|
|
# Here we bring in
|
|
# the legacy Args object in order to parse
|
|
# the old init file and write out the new
|
|
# yaml format.
|
|
def migrate_init_file(legacy_format: Path):
|
|
old = legacy_parser.parse_args([f"@{str(legacy_format)}"])
|
|
new = InvokeAIAppConfig.get_config()
|
|
|
|
fields = [x for x, y in InvokeAIAppConfig.__fields__.items() if y.field_info.extra.get("category") != "DEPRECATED"]
|
|
for attr in fields:
|
|
if hasattr(old, attr):
|
|
try:
|
|
setattr(new, attr, getattr(old, attr))
|
|
except ValidationError as e:
|
|
print(f"* Ignoring incompatible value for field {attr}:\n {str(e)}")
|
|
|
|
# a few places where the field names have changed and we have to
|
|
# manually add in the new names/values
|
|
new.xformers_enabled = old.xformers
|
|
new.conf_path = old.conf
|
|
new.root = legacy_format.parent.resolve()
|
|
|
|
invokeai_yaml = legacy_format.parent / "invokeai.yaml"
|
|
with open(invokeai_yaml, "w", encoding="utf-8") as outfile:
|
|
outfile.write(new.to_yaml())
|
|
|
|
legacy_format.replace(legacy_format.parent / "invokeai.init.orig")
|
|
|
|
|
|
# -------------------------------------
|
|
def migrate_models(root: Path):
|
|
from invokeai.backend.install.migrate_to_3 import do_migrate
|
|
|
|
do_migrate(root, root)
|
|
|
|
|
|
def migrate_if_needed(opt: Namespace, root: Path) -> bool:
|
|
# We check for to see if the runtime directory is correctly initialized.
|
|
old_init_file = root / "invokeai.init"
|
|
new_init_file = root / "invokeai.yaml"
|
|
old_hub = root / "models/hub"
|
|
migration_needed = (old_init_file.exists() and not new_init_file.exists()) and old_hub.exists()
|
|
|
|
if migration_needed:
|
|
if opt.yes_to_all or yes_or_no(
|
|
f"{str(config.root_path)} appears to be a 2.3 format root directory. Convert to version 3.0?"
|
|
):
|
|
logger.info("** Migrating invokeai.init to invokeai.yaml")
|
|
migrate_init_file(old_init_file)
|
|
config.parse_args(argv=[], conf=OmegaConf.load(new_init_file))
|
|
|
|
if old_hub.exists():
|
|
migrate_models(config.root_path)
|
|
else:
|
|
print("Cannot continue without conversion. Aborting.")
|
|
|
|
return migration_needed
|
|
|
|
|
|
# -------------------------------------
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
|
|
parser.add_argument(
|
|
"--skip-sd-weights",
|
|
dest="skip_sd_weights",
|
|
action=argparse.BooleanOptionalAction,
|
|
default=False,
|
|
help="skip downloading the large Stable Diffusion weight files",
|
|
)
|
|
parser.add_argument(
|
|
"--skip-support-models",
|
|
dest="skip_support_models",
|
|
action=argparse.BooleanOptionalAction,
|
|
default=False,
|
|
help="skip downloading the support models",
|
|
)
|
|
parser.add_argument(
|
|
"--full-precision",
|
|
dest="full_precision",
|
|
action=argparse.BooleanOptionalAction,
|
|
type=bool,
|
|
default=False,
|
|
help="use 32-bit weights instead of faster 16-bit weights",
|
|
)
|
|
parser.add_argument(
|
|
"--yes",
|
|
"-y",
|
|
dest="yes_to_all",
|
|
action="store_true",
|
|
help='answer "yes" to all prompts',
|
|
)
|
|
parser.add_argument(
|
|
"--default_only",
|
|
action="store_true",
|
|
help="when --yes specified, only install the default model",
|
|
)
|
|
parser.add_argument(
|
|
"--config_file",
|
|
"-c",
|
|
dest="config_file",
|
|
type=str,
|
|
default=None,
|
|
help="path to configuration file to create",
|
|
)
|
|
parser.add_argument(
|
|
"--root_dir",
|
|
dest="root",
|
|
type=str,
|
|
default=None,
|
|
help="path to root of install directory",
|
|
)
|
|
opt = parser.parse_args()
|
|
|
|
invoke_args = []
|
|
if opt.root:
|
|
invoke_args.extend(["--root", opt.root])
|
|
if opt.full_precision:
|
|
invoke_args.extend(["--precision", "float32"])
|
|
config.parse_args(invoke_args)
|
|
logger = InvokeAILogger().getLogger(config=config)
|
|
|
|
errors = set()
|
|
|
|
try:
|
|
# if we do a root migration/upgrade, then we are keeping previous
|
|
# configuration and we are done.
|
|
if migrate_if_needed(opt, config.root_path):
|
|
sys.exit(0)
|
|
|
|
# run this unconditionally in case new directories need to be added
|
|
initialize_rootdir(config.root_path, opt.yes_to_all)
|
|
|
|
models_to_download = default_user_selections(opt)
|
|
new_init_file = config.root_path / "invokeai.yaml"
|
|
|
|
if opt.yes_to_all:
|
|
write_default_options(opt, new_init_file)
|
|
init_options = Namespace(precision="float32" if opt.full_precision else "float16")
|
|
else:
|
|
init_options, models_to_download = run_console_ui(opt, new_init_file)
|
|
if init_options:
|
|
write_opts(init_options, new_init_file)
|
|
else:
|
|
logger.info('\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n')
|
|
sys.exit(0)
|
|
|
|
if opt.skip_support_models:
|
|
logger.info("Skipping support models at user's request")
|
|
else:
|
|
logger.info("Installing support models")
|
|
download_support_models()
|
|
|
|
if opt.skip_sd_weights:
|
|
logger.warning("Skipping diffusion weights download per user request")
|
|
elif models_to_download:
|
|
process_and_execute(opt, models_to_download)
|
|
|
|
postscript(errors=errors)
|
|
if not opt.yes_to_all:
|
|
input("Press any key to continue...")
|
|
except WindowTooSmallException as e:
|
|
logger.error(str(e))
|
|
except KeyboardInterrupt:
|
|
print("\nGoodbye! Come back soon.")
|
|
|
|
|
|
# -------------------------------------
|
|
if __name__ == "__main__":
|
|
main()
|