mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
7486aa8608
Previously conversions of .ckpt and .safetensors files to diffusers models were failing with channel mismatch errors. This is corrected with this PR. - The model_manager convert_and_import() method now accepts the path to the checkpoint file's configuration file, using the parameter `original_config_file`. For inpainting files this should be set to the full path to `v1-inpainting-inference.yaml`. - If no configuration file is provided in the call, then the presence of an inpainting file will be inferred at the `ldm.ckpt_to_diffuser.convert_ckpt_to_diffUser()` level by looking for the string "inpaint" in the path. AUTO1111 does something similar to this, but it is brittle and not recommended. - This PR also changes the model manager model_names() method to return the model names in case folded sort order.
1189 lines
44 KiB
Python
1189 lines
44 KiB
Python
import os
|
|
import re
|
|
import sys
|
|
import shlex
|
|
import traceback
|
|
|
|
from argparse import Namespace
|
|
from pathlib import Path
|
|
from typing import Optional, Union
|
|
|
|
if sys.platform == "darwin":
|
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
|
|
|
from ldm.invoke.globals import Globals
|
|
from ldm.generate import Generate
|
|
from ldm.invoke.prompt_parser import PromptParser
|
|
from ldm.invoke.readline import get_completer, Completer
|
|
from ldm.invoke.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png
|
|
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata
|
|
from ldm.invoke.image_util import make_grid
|
|
from ldm.invoke.log import write_log
|
|
from ldm.invoke.model_manager import ModelManager
|
|
|
|
import click # type: ignore
|
|
import ldm.invoke
|
|
import pyparsing # type: ignore
|
|
|
|
# global used in multiple functions (fix)
|
|
infile = None
|
|
|
|
def main():
|
|
"""Initialize command-line parsers and the diffusion model"""
|
|
global infile
|
|
|
|
opt = Args()
|
|
args = opt.parse_args()
|
|
if not args:
|
|
sys.exit(-1)
|
|
|
|
if args.laion400m:
|
|
print('--laion400m flag has been deprecated. Please use --model laion400m instead.')
|
|
sys.exit(-1)
|
|
if args.weights:
|
|
print('--weights argument has been deprecated. Please edit ./configs/models.yaml, and select the weights using --model instead.')
|
|
sys.exit(-1)
|
|
if args.max_loaded_models is not None:
|
|
if args.max_loaded_models <= 0:
|
|
print('--max_loaded_models must be >= 1; using 1')
|
|
args.max_loaded_models = 1
|
|
|
|
# alert - setting a few globals here
|
|
Globals.try_patchmatch = args.patchmatch
|
|
Globals.always_use_cpu = args.always_use_cpu
|
|
Globals.internet_available = args.internet_available and check_internet()
|
|
Globals.disable_xformers = not args.xformers
|
|
Globals.ckpt_convert = args.ckpt_convert
|
|
|
|
print(f'>> Internet connectivity is {Globals.internet_available}')
|
|
|
|
if not args.conf:
|
|
if not os.path.exists(os.path.join(Globals.root,'configs','models.yaml')):
|
|
report_model_error(opt, e)
|
|
# print(f"\n** Error. The file {os.path.join(Globals.root,'configs','models.yaml')} could not be found.")
|
|
# print('** Please check the location of your invokeai directory and use the --root_dir option to point to the correct path.')
|
|
# print('** This script will now exit.')
|
|
# sys.exit(-1)
|
|
|
|
print(f'>> {ldm.invoke.__app_name__}, version {ldm.invoke.__version__}')
|
|
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
|
|
|
# loading here to avoid long delays on startup
|
|
from ldm.generate import Generate
|
|
|
|
# these two lines prevent a horrible warning message from appearing
|
|
# when the frozen CLIP tokenizer is imported
|
|
import transformers # type: ignore
|
|
transformers.logging.set_verbosity_error()
|
|
import diffusers
|
|
diffusers.logging.set_verbosity_error()
|
|
|
|
# Loading Face Restoration and ESRGAN Modules
|
|
gfpgan,codeformer,esrgan = load_face_restoration(opt)
|
|
|
|
# normalize the config directory relative to root
|
|
if not os.path.isabs(opt.conf):
|
|
opt.conf = os.path.normpath(os.path.join(Globals.root,opt.conf))
|
|
|
|
if opt.embeddings:
|
|
if not os.path.isabs(opt.embedding_path):
|
|
embedding_path = os.path.normpath(os.path.join(Globals.root,opt.embedding_path))
|
|
else:
|
|
embedding_path = opt.embedding_path
|
|
else:
|
|
embedding_path = None
|
|
|
|
# migrate legacy models
|
|
ModelManager.migrate_models()
|
|
|
|
# load the infile as a list of lines
|
|
if opt.infile:
|
|
try:
|
|
if os.path.isfile(opt.infile):
|
|
infile = open(opt.infile, 'r', encoding='utf-8')
|
|
elif opt.infile == '-': # stdin
|
|
infile = sys.stdin
|
|
else:
|
|
raise FileNotFoundError(f'{opt.infile} not found.')
|
|
except (FileNotFoundError, IOError) as e:
|
|
print(f'{e}. Aborting.')
|
|
sys.exit(-1)
|
|
|
|
# creating a Generate object:
|
|
try:
|
|
gen = Generate(
|
|
conf = opt.conf,
|
|
model = opt.model,
|
|
sampler_name = opt.sampler_name,
|
|
embedding_path = embedding_path,
|
|
full_precision = opt.full_precision,
|
|
precision = opt.precision,
|
|
gfpgan=gfpgan,
|
|
codeformer=codeformer,
|
|
esrgan=esrgan,
|
|
free_gpu_mem=opt.free_gpu_mem,
|
|
safety_checker=opt.safety_checker,
|
|
max_loaded_models=opt.max_loaded_models,
|
|
)
|
|
except (FileNotFoundError, TypeError, AssertionError) as e:
|
|
report_model_error(opt,e)
|
|
except (IOError, KeyError) as e:
|
|
print(f'{e}. Aborting.')
|
|
sys.exit(-1)
|
|
|
|
if opt.seamless:
|
|
print(">> changed to seamless tiling mode")
|
|
|
|
# preload the model
|
|
try:
|
|
gen.load_model()
|
|
except KeyError:
|
|
pass
|
|
except Exception as e:
|
|
report_model_error(opt, e)
|
|
|
|
# try to autoconvert new models
|
|
# autoimport new .ckpt files
|
|
if path := opt.autoconvert:
|
|
gen.model_manager.autoconvert_weights(
|
|
conf_path=opt.conf,
|
|
weights_directory=path,
|
|
)
|
|
|
|
# web server loops forever
|
|
if opt.web or opt.gui:
|
|
invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan)
|
|
sys.exit(0)
|
|
|
|
if not infile:
|
|
print(
|
|
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)"
|
|
)
|
|
|
|
try:
|
|
main_loop(gen, opt)
|
|
except KeyboardInterrupt:
|
|
print(f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}')
|
|
except Exception:
|
|
print(">> An error occurred:")
|
|
traceback.print_exc()
|
|
|
|
# TODO: main_loop() has gotten busy. Needs to be refactored.
|
|
def main_loop(gen, opt):
|
|
"""prompt/read/execute loop"""
|
|
global infile
|
|
done = False
|
|
doneAfterInFile = infile is not None
|
|
path_filter = re.compile(r'[<>:"/\\|?*]')
|
|
last_results = list()
|
|
|
|
# The readline completer reads history from the .dream_history file located in the
|
|
# output directory specified at the time of script launch. We do not currently support
|
|
# changing the history file midstream when the output directory is changed.
|
|
completer = get_completer(opt, models=gen.model_manager.list_models())
|
|
set_default_output_dir(opt, completer)
|
|
if gen.model:
|
|
add_embedding_terms(gen, completer)
|
|
output_cntr = completer.get_current_history_length()+1
|
|
|
|
# os.pathconf is not available on Windows
|
|
if hasattr(os, 'pathconf'):
|
|
path_max = os.pathconf(opt.outdir, 'PC_PATH_MAX')
|
|
name_max = os.pathconf(opt.outdir, 'PC_NAME_MAX')
|
|
else:
|
|
path_max = 260
|
|
name_max = 255
|
|
|
|
while not done:
|
|
|
|
operation = 'generate'
|
|
|
|
try:
|
|
command = get_next_command(infile, gen.model_name)
|
|
except EOFError:
|
|
done = infile is None or doneAfterInFile
|
|
infile = None
|
|
continue
|
|
|
|
# skip empty lines
|
|
if not command.strip():
|
|
continue
|
|
|
|
if command.startswith(('#', '//')):
|
|
continue
|
|
|
|
if len(command.strip()) == 1 and command.startswith('q'):
|
|
done = True
|
|
break
|
|
|
|
if not command.startswith('!history'):
|
|
completer.add_history(command)
|
|
|
|
if command.startswith('!'):
|
|
command, operation = do_command(command, gen, opt, completer)
|
|
|
|
if operation is None:
|
|
continue
|
|
|
|
if opt.parse_cmd(command) is None:
|
|
continue
|
|
|
|
if opt.init_img:
|
|
try:
|
|
if not opt.prompt:
|
|
oldargs = metadata_from_png(opt.init_img)
|
|
opt.prompt = oldargs.prompt
|
|
print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
|
|
except (OSError, AttributeError, KeyError):
|
|
pass
|
|
|
|
if len(opt.prompt) == 0:
|
|
opt.prompt = ''
|
|
|
|
# width and height are set by model if not specified
|
|
if not opt.width:
|
|
opt.width = gen.width
|
|
if not opt.height:
|
|
opt.height = gen.height
|
|
|
|
# retrieve previous value of init image if requested
|
|
if opt.init_img is not None and re.match('^-\\d+$', opt.init_img):
|
|
try:
|
|
opt.init_img = last_results[int(opt.init_img)][0]
|
|
print(f'>> Reusing previous image {opt.init_img}')
|
|
except IndexError:
|
|
print(
|
|
f'>> No previous initial image at position {opt.init_img} found')
|
|
opt.init_img = None
|
|
continue
|
|
|
|
# the outdir can change with each command, so we adjust it here
|
|
set_default_output_dir(opt,completer)
|
|
|
|
# try to relativize pathnames
|
|
for attr in ('init_img','init_mask','init_color'):
|
|
if getattr(opt,attr) and not os.path.exists(getattr(opt,attr)):
|
|
basename = getattr(opt,attr)
|
|
path = os.path.join(opt.outdir,basename)
|
|
setattr(opt,attr,path)
|
|
|
|
# retrieve previous value of seed if requested
|
|
# Exception: for postprocess operations negative seed values
|
|
# mean "discard the original seed and generate a new one"
|
|
# (this is a non-obvious hack and needs to be reworked)
|
|
if opt.seed is not None and opt.seed < 0 and operation != 'postprocess':
|
|
try:
|
|
opt.seed = last_results[opt.seed][1]
|
|
print(f'>> Reusing previous seed {opt.seed}')
|
|
except IndexError:
|
|
print(f'>> No previous seed at position {opt.seed} found')
|
|
opt.seed = None
|
|
continue
|
|
|
|
if opt.strength is None:
|
|
opt.strength = 0.75 if opt.out_direction is None else 0.83
|
|
|
|
if opt.with_variations is not None:
|
|
opt.with_variations = split_variations(opt.with_variations)
|
|
|
|
if opt.prompt_as_dir and operation == 'generate':
|
|
# sanitize the prompt to a valid folder name
|
|
subdir = path_filter.sub('_', opt.prompt)[:name_max].rstrip(' .')
|
|
|
|
# truncate path to maximum allowed length
|
|
# 39 is the length of '######.##########.##########-##.png', plus two separators and a NUL
|
|
subdir = subdir[:(path_max - 39 - len(os.path.abspath(opt.outdir)))]
|
|
current_outdir = os.path.join(opt.outdir, subdir)
|
|
|
|
print('Writing files to directory: "' + current_outdir + '"')
|
|
|
|
# make sure the output directory exists
|
|
if not os.path.exists(current_outdir):
|
|
os.makedirs(current_outdir)
|
|
else:
|
|
if not os.path.exists(opt.outdir):
|
|
os.makedirs(opt.outdir)
|
|
current_outdir = opt.outdir
|
|
|
|
# Here is where the images are actually generated!
|
|
last_results = []
|
|
try:
|
|
file_writer = PngWriter(current_outdir)
|
|
results = [] # list of filename, prompt pairs
|
|
grid_images = dict() # seed -> Image, only used if `opt.grid`
|
|
prior_variations = opt.with_variations or []
|
|
prefix = file_writer.unique_prefix()
|
|
step_callback = make_step_callback(gen, opt, prefix) if opt.save_intermediates > 0 else None
|
|
|
|
def image_writer(image, seed, upscaled=False, first_seed=None, use_prefix=None, prompt_in=None, attention_maps_image=None):
|
|
# note the seed is the seed of the current image
|
|
# the first_seed is the original seed that noise is added to
|
|
# when the -v switch is used to generate variations
|
|
nonlocal prior_variations
|
|
nonlocal prefix
|
|
|
|
path = None
|
|
if opt.grid:
|
|
grid_images[seed] = image
|
|
|
|
elif operation == 'mask':
|
|
filename = f'{prefix}.{use_prefix}.{seed}.png'
|
|
tm = opt.text_mask[0]
|
|
th = opt.text_mask[1] if len(opt.text_mask)>1 else 0.5
|
|
formatted_dream_prompt = f'!mask {opt.input_file_path} -tm {tm} {th}'
|
|
path = file_writer.save_image_and_prompt_to_png(
|
|
image = image,
|
|
dream_prompt = formatted_dream_prompt,
|
|
metadata = {},
|
|
name = filename,
|
|
compress_level = opt.png_compression,
|
|
)
|
|
results.append([path, formatted_dream_prompt])
|
|
|
|
else:
|
|
if use_prefix is not None:
|
|
prefix = use_prefix
|
|
postprocessed = upscaled if upscaled else operation=='postprocess'
|
|
opt.prompt = gen.huggingface_concepts_library.replace_triggers_with_concepts(opt.prompt or prompt_in) # to avoid the problem of non-unique concept triggers
|
|
filename, formatted_dream_prompt = prepare_image_metadata(
|
|
opt,
|
|
prefix,
|
|
seed,
|
|
operation,
|
|
prior_variations,
|
|
postprocessed,
|
|
first_seed
|
|
)
|
|
path = file_writer.save_image_and_prompt_to_png(
|
|
image = image,
|
|
dream_prompt = formatted_dream_prompt,
|
|
metadata = metadata_dumps(
|
|
opt,
|
|
seeds = [seed if opt.variation_amount==0 and len(prior_variations)==0 else first_seed],
|
|
model_hash = gen.model_hash,
|
|
),
|
|
name = filename,
|
|
compress_level = opt.png_compression,
|
|
)
|
|
|
|
# update rfc metadata
|
|
if operation == 'postprocess':
|
|
tool = re.match('postprocess:(\w+)',opt.last_operation).groups()[0]
|
|
add_postprocessing_to_metadata(
|
|
opt,
|
|
opt.input_file_path,
|
|
filename,
|
|
tool,
|
|
formatted_dream_prompt,
|
|
)
|
|
|
|
if (not postprocessed) or opt.save_original:
|
|
# only append to results if we didn't overwrite an earlier output
|
|
results.append([path, formatted_dream_prompt])
|
|
|
|
# so that the seed autocompletes (on linux|mac when -S or --seed specified
|
|
if completer and operation == 'generate':
|
|
completer.add_seed(seed)
|
|
completer.add_seed(first_seed)
|
|
last_results.append([path, seed])
|
|
|
|
if operation == 'generate':
|
|
catch_ctrl_c = infile is None # if running interactively, we catch keyboard interrupts
|
|
opt.last_operation='generate'
|
|
try:
|
|
gen.prompt2image(
|
|
image_callback=image_writer,
|
|
step_callback=step_callback,
|
|
catch_interrupts=catch_ctrl_c,
|
|
**vars(opt)
|
|
)
|
|
except (PromptParser.ParsingException, pyparsing.ParseException) as e:
|
|
print('** An error occurred while processing your prompt **')
|
|
print(f'** {str(e)} **')
|
|
elif operation == 'postprocess':
|
|
print(f'>> fixing {opt.prompt}')
|
|
opt.last_operation = do_postprocess(gen,opt,image_writer)
|
|
|
|
elif operation == 'mask':
|
|
print(f'>> generating masks from {opt.prompt}')
|
|
do_textmask(gen, opt, image_writer)
|
|
|
|
if opt.grid and len(grid_images) > 0:
|
|
grid_img = make_grid(list(grid_images.values()))
|
|
grid_seeds = list(grid_images.keys())
|
|
first_seed = last_results[0][1]
|
|
filename = f'{prefix}.{first_seed}.png'
|
|
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,grid=True,iterations=len(grid_images))
|
|
formatted_dream_prompt += f' # {grid_seeds}'
|
|
metadata = metadata_dumps(
|
|
opt,
|
|
seeds = grid_seeds,
|
|
model_hash = gen.model_hash
|
|
)
|
|
path = file_writer.save_image_and_prompt_to_png(
|
|
image = grid_img,
|
|
dream_prompt = formatted_dream_prompt,
|
|
metadata = metadata,
|
|
name = filename
|
|
)
|
|
results = [[path, formatted_dream_prompt]]
|
|
|
|
except AssertionError as e:
|
|
print(e)
|
|
continue
|
|
|
|
except OSError as e:
|
|
print(e)
|
|
continue
|
|
|
|
print('Outputs:')
|
|
log_path = os.path.join(current_outdir, 'invoke_log')
|
|
output_cntr = write_log(results, log_path ,('txt', 'md'), output_cntr)
|
|
print()
|
|
|
|
|
|
print(f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}')
|
|
|
|
# TO DO: remove repetitive code and the awkward command.replace() trope
|
|
# Just do a simple parse of the command!
|
|
def do_command(command:str, gen, opt:Args, completer) -> tuple:
|
|
global infile
|
|
operation = 'generate' # default operation, alternative is 'postprocess'
|
|
|
|
if command.startswith('!dream'): # in case a stored prompt still contains the !dream command
|
|
command = command.replace('!dream ','',1)
|
|
|
|
elif command.startswith('!fix'):
|
|
command = command.replace('!fix ','',1)
|
|
operation = 'postprocess'
|
|
|
|
elif command.startswith('!mask'):
|
|
command = command.replace('!mask ','',1)
|
|
operation = 'mask'
|
|
|
|
elif command.startswith('!switch'):
|
|
model_name = command.replace('!switch ','',1)
|
|
try:
|
|
gen.set_model(model_name)
|
|
add_embedding_terms(gen, completer)
|
|
except KeyError as e:
|
|
print(str(e))
|
|
except Exception as e:
|
|
report_model_error(opt,e)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!models'):
|
|
gen.model_manager.print_models()
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!import'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1')
|
|
else:
|
|
import_model(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!convert'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide the path to a .ckpt or .safetensors model')
|
|
elif not os.path.exists(path[1]):
|
|
print(f'** {path[1]}: model not found')
|
|
else:
|
|
optimize_model(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
|
|
elif command.startswith('!optimize'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide an installed model name')
|
|
elif not path[1] in gen.model_manager.list_models():
|
|
print(f'** {path[1]}: model not found')
|
|
else:
|
|
optimize_model(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!edit'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide the name of a model')
|
|
else:
|
|
edit_model(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!del'):
|
|
path = shlex.split(command)
|
|
if len(path) < 2:
|
|
print('** please provide the name of a model')
|
|
else:
|
|
del_config(path[1], gen, opt, completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!fetch'):
|
|
file_path = command.replace('!fetch','',1).strip()
|
|
retrieve_dream_command(opt,file_path,completer)
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!replay'):
|
|
file_path = command.replace('!replay','',1).strip()
|
|
if infile is None and os.path.isfile(file_path):
|
|
infile = open(file_path, 'r', encoding='utf-8')
|
|
completer.add_history(command)
|
|
operation = None
|
|
|
|
elif command.startswith('!history'):
|
|
completer.show_history()
|
|
operation = None
|
|
|
|
elif command.startswith('!search'):
|
|
search_str = command.replace('!search','',1).strip()
|
|
completer.show_history(search_str)
|
|
operation = None
|
|
|
|
elif command.startswith('!clear'):
|
|
completer.clear_history()
|
|
operation = None
|
|
|
|
elif re.match('^!(\d+)',command):
|
|
command_no = re.match('^!(\d+)',command).groups()[0]
|
|
command = completer.get_line(int(command_no))
|
|
completer.set_line(command)
|
|
operation = None
|
|
|
|
else: # not a recognized command, so give the --help text
|
|
command = '-h'
|
|
return command, operation
|
|
|
|
def set_default_output_dir(opt:Args, completer:Completer):
|
|
'''
|
|
If opt.outdir is relative, we add the root directory to it
|
|
normalize the outdir relative to root and make sure it exists.
|
|
'''
|
|
if not os.path.isabs(opt.outdir):
|
|
opt.outdir=os.path.normpath(os.path.join(Globals.root,opt.outdir))
|
|
if not os.path.exists(opt.outdir):
|
|
os.makedirs(opt.outdir)
|
|
completer.set_default_dir(opt.outdir)
|
|
|
|
|
|
def import_model(model_path: str, gen, opt, completer):
|
|
'''
|
|
model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path; or
|
|
(3) a huggingface repository id
|
|
'''
|
|
model_name = None
|
|
|
|
if model_path.startswith(('http:','https:','ftp:')):
|
|
model_name = import_ckpt_model(model_path, gen, opt, completer)
|
|
|
|
elif os.path.exists(model_path) and model_path.endswith(('.ckpt','.safetensors')) and os.path.isfile(model_path):
|
|
model_name = import_ckpt_model(model_path, gen, opt, completer)
|
|
|
|
elif os.path.isdir(model_path):
|
|
|
|
# Allow for a directory containing multiple models.
|
|
models = list(Path(model_path).rglob('*.ckpt')) + list(Path(model_path).rglob('*.safetensors'))
|
|
|
|
if models:
|
|
# Only the last model name will be used below.
|
|
for model in sorted(models):
|
|
|
|
if click.confirm(f'Import {model.stem} ?', default=True):
|
|
model_name = import_ckpt_model(model, gen, opt, completer)
|
|
print()
|
|
else:
|
|
model_name = import_diffuser_model(Path(model_path), gen, opt, completer)
|
|
|
|
elif re.match(r'^[\w.+-]+/[\w.+-]+$', model_path):
|
|
model_name = import_diffuser_model(model_path, gen, opt, completer)
|
|
|
|
else:
|
|
print(f'** {model_path} is neither the path to a .ckpt file nor a diffusers repository id. Can\'t import.')
|
|
|
|
if not model_name:
|
|
return
|
|
|
|
if not _verify_load(model_name, gen):
|
|
print('** model failed to load. Discarding configuration entry')
|
|
gen.model_manager.del_model(model_name)
|
|
return
|
|
if input('Make this the default model? [n] ').strip() in ('y','Y'):
|
|
gen.model_manager.set_default_model(model_name)
|
|
|
|
gen.model_manager.commit(opt.conf)
|
|
completer.update_models(gen.model_manager.list_models())
|
|
print(f'>> {model_name} successfully installed')
|
|
|
|
def import_diffuser_model(path_or_repo: Union[Path, str], gen, _, completer) -> Optional[str]:
|
|
manager = gen.model_manager
|
|
default_name = Path(path_or_repo).stem
|
|
default_description = f'Imported model {default_name}'
|
|
model_name, model_description = _get_model_name_and_desc(
|
|
manager,
|
|
completer,
|
|
model_name=default_name,
|
|
model_description=default_description
|
|
)
|
|
vae = None
|
|
if input('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"? [n] ').strip() in ('y','Y'):
|
|
vae = dict(repo_id='stabilityai/sd-vae-ft-mse')
|
|
|
|
if not manager.import_diffuser_model(
|
|
path_or_repo,
|
|
model_name = model_name,
|
|
vae = vae,
|
|
description = model_description):
|
|
print('** model failed to import')
|
|
return None
|
|
return model_name
|
|
|
|
def import_ckpt_model(path_or_url: Union[Path, str], gen, opt, completer) -> Optional[str]:
|
|
manager = gen.model_manager
|
|
default_name = Path(path_or_url).stem
|
|
default_description = f'Imported model {default_name}'
|
|
model_name, model_description = _get_model_name_and_desc(
|
|
manager,
|
|
completer,
|
|
model_name=default_name,
|
|
model_description=default_description
|
|
)
|
|
config_file = None
|
|
default = Path(Globals.root,'configs/stable-diffusion/v1-inference.yaml')
|
|
|
|
completer.complete_extensions(('.yaml','.yml'))
|
|
completer.set_line(str(default))
|
|
done = False
|
|
while not done:
|
|
config_file = input('Configuration file for this model: ').strip()
|
|
done = os.path.exists(config_file)
|
|
|
|
completer.complete_extensions(('.ckpt','.safetensors'))
|
|
vae = None
|
|
default = Path(Globals.root,'models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt')
|
|
completer.set_line(str(default))
|
|
done = False
|
|
while not done:
|
|
vae = input('VAE file for this model (leave blank for none): ').strip() or None
|
|
done = (not vae) or os.path.exists(vae)
|
|
completer.complete_extensions(None)
|
|
|
|
if not manager.import_ckpt_model(
|
|
path_or_url,
|
|
config = config_file,
|
|
vae = vae,
|
|
model_name = model_name,
|
|
model_description = model_description,
|
|
commit_to_conf = opt.conf,
|
|
):
|
|
print('** model failed to import')
|
|
return None
|
|
|
|
return model_name
|
|
|
|
def _verify_load(model_name:str, gen)->bool:
|
|
print('>> Verifying that new model loads...')
|
|
current_model = gen.model_name
|
|
if not gen.model_manager.get_model(model_name):
|
|
return False
|
|
do_switch = input('Keep model loaded? [y] ')
|
|
if len(do_switch)==0 or do_switch[0] in ('y','Y'):
|
|
gen.set_model(model_name)
|
|
else:
|
|
print('>> Restoring previous model')
|
|
gen.set_model(current_model)
|
|
return True
|
|
|
|
def _get_model_name_and_desc(model_manager,completer,model_name:str='',model_description:str=''):
|
|
model_name = _get_model_name(model_manager.list_models(),completer,model_name)
|
|
completer.set_line(model_description)
|
|
model_description = input(f'Description for this model [{model_description}]: ').strip() or model_description
|
|
return model_name, model_description
|
|
|
|
def optimize_model(model_name_or_path:str, gen, opt, completer):
|
|
manager = gen.model_manager
|
|
ckpt_path = None
|
|
original_config_file = None
|
|
|
|
if (model_info := manager.model_info(model_name_or_path)):
|
|
if 'weights' in model_info:
|
|
ckpt_path = Path(model_info['weights'])
|
|
original_config_file = Path(model_info['config'])
|
|
model_name = model_name_or_path
|
|
model_description = model_info['description']
|
|
else:
|
|
print(f'** {model_name_or_path} is not a legacy .ckpt weights file')
|
|
return
|
|
elif os.path.exists(model_name_or_path):
|
|
ckpt_path = Path(model_name_or_path)
|
|
model_name, model_description = _get_model_name_and_desc(
|
|
manager,
|
|
completer,
|
|
ckpt_path.stem,
|
|
f'Converted model {ckpt_path.stem}'
|
|
)
|
|
is_inpainting = input('Is this an inpainting model? [n] ').startswith(('y','Y'))
|
|
original_config_file = Path(
|
|
'configs',
|
|
'stable-diffusion',
|
|
'v1-inpainting-inference.yaml' if is_inpainting else 'v1-inference.yaml'
|
|
)
|
|
else:
|
|
print(f'** {model_name_or_path} is neither an existing model nor the path to a .ckpt file')
|
|
return
|
|
|
|
if not ckpt_path.is_absolute():
|
|
ckpt_path = Path(Globals.root,ckpt_path)
|
|
|
|
if original_config_file and not original_config_file.is_absolute():
|
|
original_config_file = Path(Globals.root,original_config_file)
|
|
|
|
diffuser_path = Path(Globals.root, 'models',Globals.converted_ckpts_dir,model_name)
|
|
if diffuser_path.exists():
|
|
print(f'** {model_name_or_path} is already optimized. Will not overwrite. If this is an error, please remove the directory {diffuser_path} and try again.')
|
|
return
|
|
|
|
vae = None
|
|
if input('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"? [n] ').strip() in ('y','Y'):
|
|
vae = dict(repo_id='stabilityai/sd-vae-ft-mse')
|
|
|
|
new_config = gen.model_manager.convert_and_import(
|
|
ckpt_path,
|
|
diffuser_path,
|
|
model_name=model_name,
|
|
model_description=model_description,
|
|
vae = vae,
|
|
original_config_file = original_config_file,
|
|
commit_to_conf=opt.conf,
|
|
)
|
|
if not new_config:
|
|
return
|
|
|
|
completer.update_models(gen.model_manager.list_models())
|
|
if input(f'Load optimized model {model_name}? [y] ').strip() not in ('n','N'):
|
|
gen.set_model(model_name)
|
|
|
|
response = input(f'Delete the original .ckpt file at ({ckpt_path} ? [n] ')
|
|
if response.startswith(('y','Y')):
|
|
ckpt_path.unlink(missing_ok=True)
|
|
print(f'{ckpt_path} deleted')
|
|
|
|
def del_config(model_name:str, gen, opt, completer):
|
|
current_model = gen.model_name
|
|
if model_name == current_model:
|
|
print("** Can't delete active model. !switch to another model first. **")
|
|
return
|
|
if model_name not in gen.model_manager.config:
|
|
print(f"** Unknown model {model_name}")
|
|
return
|
|
|
|
if input(f'Remove {model_name} from the list of models known to InvokeAI? [y] ').strip().startswith(('n','N')):
|
|
return
|
|
|
|
delete_completely = input('Completely remove the model file or directory from disk? [n] ').startswith(('y','Y'))
|
|
gen.model_manager.del_model(model_name,delete_files=delete_completely)
|
|
gen.model_manager.commit(opt.conf)
|
|
print(f'** {model_name} deleted')
|
|
completer.update_models(gen.model_manager.list_models())
|
|
|
|
def edit_model(model_name:str, gen, opt, completer):
|
|
manager = gen.model_manager
|
|
if not (info := manager.model_info(model_name)):
|
|
print(f'** Unknown model {model_name}')
|
|
return
|
|
|
|
print(f'\n>> Editing model {model_name} from configuration file {opt.conf}')
|
|
new_name = _get_model_name(manager.list_models(),completer,model_name)
|
|
|
|
for attribute in info.keys():
|
|
if type(info[attribute]) != str:
|
|
continue
|
|
if attribute == 'format':
|
|
continue
|
|
completer.set_line(info[attribute])
|
|
info[attribute] = input(f'{attribute}: ') or info[attribute]
|
|
|
|
if new_name != model_name:
|
|
manager.del_model(model_name)
|
|
|
|
# this does the update
|
|
manager.add_model(new_name, info, True)
|
|
|
|
if input('Make this the default model? [n] ').startswith(('y','Y')):
|
|
manager.set_default_model(new_name)
|
|
manager.commit(opt.conf)
|
|
completer.update_models(manager.list_models())
|
|
print('>> Model successfully updated')
|
|
|
|
def _get_model_name(existing_names,completer,default_name:str='')->str:
|
|
done = False
|
|
completer.set_line(default_name)
|
|
while not done:
|
|
model_name = input(f'Short name for this model [{default_name}]: ').strip()
|
|
if len(model_name)==0:
|
|
model_name = default_name
|
|
if not re.match('^[\w._+:/-]+$',model_name):
|
|
print('** model name must contain only words, digits and the characters "._+:/-" **')
|
|
elif model_name != default_name and model_name in existing_names:
|
|
print(f'** the name {model_name} is already in use. Pick another.')
|
|
else:
|
|
done = True
|
|
return model_name
|
|
|
|
|
|
def do_textmask(gen, opt, callback):
|
|
image_path = opt.prompt
|
|
if not os.path.exists(image_path):
|
|
image_path = os.path.join(opt.outdir,image_path)
|
|
assert os.path.exists(image_path), '** "{opt.prompt}" not found. Please enter the name of an existing image file to mask **'
|
|
assert opt.text_mask is not None and len(opt.text_mask) >= 1, '** Please provide a text mask with -tm **'
|
|
opt.input_file_path = image_path
|
|
tm = opt.text_mask[0]
|
|
threshold = float(opt.text_mask[1]) if len(opt.text_mask) > 1 else 0.5
|
|
gen.apply_textmask(
|
|
image_path = image_path,
|
|
prompt = tm,
|
|
threshold = threshold,
|
|
callback = callback,
|
|
)
|
|
|
|
def do_postprocess (gen, opt, callback):
|
|
file_path = opt.prompt # treat the prompt as the file pathname
|
|
if opt.new_prompt is not None:
|
|
opt.prompt = opt.new_prompt
|
|
else:
|
|
opt.prompt = None
|
|
|
|
if os.path.dirname(file_path) == '': #basename given
|
|
file_path = os.path.join(opt.outdir,file_path)
|
|
|
|
opt.input_file_path = file_path
|
|
|
|
tool=None
|
|
if opt.facetool_strength > 0:
|
|
tool = opt.facetool
|
|
elif opt.embiggen:
|
|
tool = 'embiggen'
|
|
elif opt.upscale:
|
|
tool = 'upscale'
|
|
elif opt.out_direction:
|
|
tool = 'outpaint'
|
|
elif opt.outcrop:
|
|
tool = 'outcrop'
|
|
opt.save_original = True # do not overwrite old image!
|
|
opt.last_operation = f'postprocess:{tool}'
|
|
try:
|
|
gen.apply_postprocessor(
|
|
image_path = file_path,
|
|
tool = tool,
|
|
facetool_strength = opt.facetool_strength,
|
|
codeformer_fidelity = opt.codeformer_fidelity,
|
|
save_original = opt.save_original,
|
|
upscale = opt.upscale,
|
|
out_direction = opt.out_direction,
|
|
outcrop = opt.outcrop,
|
|
callback = callback,
|
|
opt = opt,
|
|
)
|
|
except OSError:
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
print(f'** {file_path}: file could not be read')
|
|
return
|
|
except (KeyError, AttributeError):
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
return
|
|
return opt.last_operation
|
|
|
|
def add_postprocessing_to_metadata(opt,original_file,new_file,tool,command):
|
|
original_file = original_file if os.path.exists(original_file) else os.path.join(opt.outdir,original_file)
|
|
new_file = new_file if os.path.exists(new_file) else os.path.join(opt.outdir,new_file)
|
|
try:
|
|
meta = retrieve_metadata(original_file)['sd-metadata']
|
|
except AttributeError:
|
|
try:
|
|
meta = retrieve_metadata(new_file)['sd-metadata']
|
|
except AttributeError:
|
|
meta = {}
|
|
|
|
if 'image' not in meta:
|
|
meta = metadata_dumps(opt,seeds=[opt.seed])['image']
|
|
meta['image'] = {}
|
|
img_data = meta.get('image')
|
|
pp = img_data.get('postprocessing',[]) or []
|
|
pp.append(
|
|
{
|
|
'tool':tool,
|
|
'dream_command':command,
|
|
}
|
|
)
|
|
meta['image']['postprocessing'] = pp
|
|
write_metadata(new_file,meta)
|
|
|
|
def prepare_image_metadata(
|
|
opt,
|
|
prefix,
|
|
seed,
|
|
operation='generate',
|
|
prior_variations=[],
|
|
postprocessed=False,
|
|
first_seed=None
|
|
):
|
|
|
|
if postprocessed and opt.save_original:
|
|
filename = choose_postprocess_name(opt,prefix,seed)
|
|
else:
|
|
wildcards = dict(opt.__dict__)
|
|
wildcards['prefix'] = prefix
|
|
wildcards['seed'] = seed
|
|
try:
|
|
filename = opt.fnformat.format(**wildcards)
|
|
except KeyError as e:
|
|
print(f'** The filename format contains an unknown key \'{e.args[0]}\'. Will use {{prefix}}.{{seed}}.png\' instead')
|
|
filename = f'{prefix}.{seed}.png'
|
|
except IndexError:
|
|
print(f'** The filename format is broken or complete. Will use \'{{prefix}}.{{seed}}.png\' instead')
|
|
filename = f'{prefix}.{seed}.png'
|
|
|
|
if opt.variation_amount > 0:
|
|
first_seed = first_seed or seed
|
|
this_variation = [[seed, opt.variation_amount]]
|
|
opt.with_variations = prior_variations + this_variation
|
|
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
|
|
elif len(prior_variations) > 0:
|
|
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
|
|
elif operation == 'postprocess':
|
|
formatted_dream_prompt = '!fix '+opt.dream_prompt_str(seed=seed,prompt=opt.input_file_path)
|
|
else:
|
|
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
|
|
return filename,formatted_dream_prompt
|
|
|
|
def choose_postprocess_name(opt,prefix,seed) -> str:
|
|
match = re.search('postprocess:(\w+)',opt.last_operation)
|
|
if match:
|
|
modifier = match.group(1) # will look like "gfpgan", "upscale", "outpaint" or "embiggen"
|
|
else:
|
|
modifier = 'postprocessed'
|
|
|
|
counter = 0
|
|
filename = None
|
|
available = False
|
|
while not available:
|
|
if counter == 0:
|
|
filename = f'{prefix}.{seed}.{modifier}.png'
|
|
else:
|
|
filename = f'{prefix}.{seed}.{modifier}-{counter:02d}.png'
|
|
available = not os.path.exists(os.path.join(opt.outdir,filename))
|
|
counter += 1
|
|
return filename
|
|
|
|
def get_next_command(infile=None, model_name='no model') -> str: # command string
|
|
if infile is None:
|
|
command = input(f'({model_name}) invoke> ').strip()
|
|
else:
|
|
command = infile.readline()
|
|
if not command:
|
|
raise EOFError
|
|
else:
|
|
command = command.strip()
|
|
if len(command)>0:
|
|
print(f'#{command}')
|
|
return command
|
|
|
|
def invoke_ai_web_server_loop(gen: Generate, gfpgan, codeformer, esrgan):
|
|
print('\n* --web was specified, starting web server...')
|
|
from invokeai.backend import InvokeAIWebServer
|
|
# Change working directory to the stable-diffusion directory
|
|
os.chdir(
|
|
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
|
)
|
|
|
|
invoke_ai_web_server = InvokeAIWebServer(generate=gen, gfpgan=gfpgan, codeformer=codeformer, esrgan=esrgan)
|
|
|
|
try:
|
|
invoke_ai_web_server.run()
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
def add_embedding_terms(gen,completer):
|
|
'''
|
|
Called after setting the model, updates the autocompleter with
|
|
any terms loaded by the embedding manager.
|
|
'''
|
|
trigger_strings = gen.model.textual_inversion_manager.get_all_trigger_strings()
|
|
completer.add_embedding_terms(trigger_strings)
|
|
|
|
def split_variations(variations_string) -> list:
|
|
# shotgun parsing, woo
|
|
parts = []
|
|
broken = False # python doesn't have labeled loops...
|
|
for part in variations_string.split(','):
|
|
seed_and_weight = part.split(':')
|
|
if len(seed_and_weight) != 2:
|
|
print(f'** Could not parse with_variation part "{part}"')
|
|
broken = True
|
|
break
|
|
try:
|
|
seed = int(seed_and_weight[0])
|
|
weight = float(seed_and_weight[1])
|
|
except ValueError:
|
|
print(f'** Could not parse with_variation part "{part}"')
|
|
broken = True
|
|
break
|
|
parts.append([seed, weight])
|
|
if broken:
|
|
return None
|
|
elif len(parts) == 0:
|
|
return None
|
|
else:
|
|
return parts
|
|
|
|
def load_face_restoration(opt):
|
|
try:
|
|
gfpgan, codeformer, esrgan = None, None, None
|
|
if opt.restore or opt.esrgan:
|
|
from ldm.invoke.restoration import Restoration
|
|
restoration = Restoration()
|
|
if opt.restore:
|
|
gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_model_path)
|
|
else:
|
|
print('>> Face restoration disabled')
|
|
if opt.esrgan:
|
|
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
|
|
else:
|
|
print('>> Upscaling disabled')
|
|
else:
|
|
print('>> Face restoration and upscaling disabled')
|
|
except (ModuleNotFoundError, ImportError):
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
|
|
return gfpgan,codeformer,esrgan
|
|
|
|
def make_step_callback(gen, opt, prefix):
|
|
destination = os.path.join(opt.outdir,'intermediates',prefix)
|
|
os.makedirs(destination,exist_ok=True)
|
|
print(f'>> Intermediate images will be written into {destination}')
|
|
def callback(img, step):
|
|
if step % opt.save_intermediates == 0 or step == opt.steps-1:
|
|
filename = os.path.join(destination,f'{step:04}.png')
|
|
image = gen.sample_to_image(img)
|
|
image.save(filename,'PNG')
|
|
return callback
|
|
|
|
def retrieve_dream_command(opt,command,completer):
|
|
'''
|
|
Given a full or partial path to a previously-generated image file,
|
|
will retrieve and format the dream command used to generate the image,
|
|
and pop it into the readline buffer (linux, Mac), or print out a comment
|
|
for cut-and-paste (windows)
|
|
|
|
Given a wildcard path to a folder with image png files,
|
|
will retrieve and format the dream command used to generate the images,
|
|
and save them to a file commands.txt for further processing
|
|
'''
|
|
if len(command) == 0:
|
|
return
|
|
|
|
tokens = command.split()
|
|
dir,basename = os.path.split(tokens[0])
|
|
if len(dir) == 0:
|
|
path = os.path.join(opt.outdir,basename)
|
|
else:
|
|
path = tokens[0]
|
|
|
|
if len(tokens) > 1:
|
|
return write_commands(opt, path, tokens[1])
|
|
|
|
cmd = ''
|
|
try:
|
|
cmd = dream_cmd_from_png(path)
|
|
except OSError:
|
|
print(f'## {tokens[0]}: file could not be read')
|
|
except (KeyError, AttributeError, IndexError):
|
|
print(f'## {tokens[0]}: file has no metadata')
|
|
except:
|
|
print(f'## {tokens[0]}: file could not be processed')
|
|
if len(cmd)>0:
|
|
completer.set_line(cmd)
|
|
|
|
def write_commands(opt, file_path:str, outfilepath:str):
|
|
dir,basename = os.path.split(file_path)
|
|
try:
|
|
paths = sorted(list(Path(dir).glob(basename)))
|
|
except ValueError:
|
|
print(f'## "{basename}": unacceptable pattern')
|
|
return
|
|
|
|
commands = []
|
|
cmd = None
|
|
for path in paths:
|
|
try:
|
|
cmd = dream_cmd_from_png(path)
|
|
except (KeyError, AttributeError, IndexError):
|
|
print(f'## {path}: file has no metadata')
|
|
except:
|
|
print(f'## {path}: file could not be processed')
|
|
if cmd:
|
|
commands.append(f'# {path}')
|
|
commands.append(cmd)
|
|
if len(commands)>0:
|
|
dir,basename = os.path.split(outfilepath)
|
|
if len(dir)==0:
|
|
outfilepath = os.path.join(opt.outdir,basename)
|
|
with open(outfilepath, 'w', encoding='utf-8') as f:
|
|
f.write('\n'.join(commands))
|
|
print(f'>> File {outfilepath} with commands created')
|
|
|
|
def report_model_error(opt:Namespace, e:Exception):
|
|
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
|
print('** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models.')
|
|
yes_to_all = os.environ.get('INVOKE_MODEL_RECONFIGURE')
|
|
if yes_to_all:
|
|
print('** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE')
|
|
else:
|
|
response = input('Do you want to run invokeai-configure script to select and/or reinstall models? [y] ')
|
|
if response.startswith(('n', 'N')):
|
|
return
|
|
|
|
print('invokeai-configure is launching....\n')
|
|
|
|
# Match arguments that were set on the CLI
|
|
# only the arguments accepted by the configuration script are parsed
|
|
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
|
|
config = ["--config", opt.conf] if opt.conf is not None else []
|
|
previous_args = sys.argv
|
|
sys.argv = [ 'invokeai-configure' ]
|
|
sys.argv.extend(root_dir)
|
|
sys.argv.extend(config)
|
|
if yes_to_all is not None:
|
|
for arg in yes_to_all.split():
|
|
sys.argv.append(arg)
|
|
|
|
from ldm.invoke.config import invokeai_configure
|
|
invokeai_configure.main()
|
|
print('** InvokeAI will now restart')
|
|
sys.argv = previous_args
|
|
main() # would rather do a os.exec(), but doesn't exist?
|
|
sys.exit(0)
|
|
|
|
def check_internet()->bool:
|
|
'''
|
|
Return true if the internet is reachable.
|
|
It does this by pinging huggingface.co.
|
|
'''
|
|
import urllib.request
|
|
host = 'http://huggingface.co'
|
|
try:
|
|
urllib.request.urlopen(host,timeout=1)
|
|
return True
|
|
except:
|
|
return False
|