InvokeAI/scripts/configure_invokeai.py
Kevin Turner e0495a7440 Merge remote-tracking branch 'origin/main' into dev/diffusers
# Conflicts:
#	scripts/configure_invokeai.py
2022-12-03 20:00:39 -08:00

871 lines
35 KiB
Python
Executable File

#!/usr/bin/env python
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
#
# Coauthor: Kevin Turner http://github.com/keturn
#
print('Loading Python libraries...\n')
import argparse
import os
import re
import shutil
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Union
from urllib import request
import requests
import transformers
from diffusers import StableDiffusionPipeline, AutoencoderKL
from getpass_asterisk import getpass_asterisk
from huggingface_hub import HfFolder, hf_hub_url, whoami as hf_whoami
from omegaconf import OmegaConf
from tqdm import tqdm
from transformers import CLIPTokenizer, CLIPTextModel
from ldm.invoke.globals import Globals
from ldm.invoke.readline import generic_completer
warnings.filterwarnings('ignore')
import torch
transformers.logging.set_verbosity_error()
try:
from ldm.invoke.model_cache import ModelCache
except ImportError:
sys.path.append('.')
from ldm.invoke.model_cache import ModelCache
#--------------------------globals-----------------------
Model_dir = 'models'
Weights_dir = 'ldm/stable-diffusion-v1/'
Dataset_path = './configs/INITIAL_MODELS.yaml'
Default_config_file = './configs/models.yaml'
SD_Configs = './configs/stable-diffusion'
assert os.path.exists(Dataset_path),"The configs directory cannot be found. Please run this script from within the InvokeAI distribution directory, or from within the invokeai runtime directory."
Datasets = OmegaConf.load(Dataset_path)
completer = generic_completer(['yes','no'])
Config_preamble = '''# This file describes the alternative machine learning models
# available to InvokeAI script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
'''
#---------------------------------------------
def introduction():
print(
'''Welcome to InvokeAI. This script will help download the Stable Diffusion weight files
and other large models that are needed for text to image generation. At any point you may interrupt
this program and resume later.\n'''
)
#--------------------------------------------
def postscript(errors: None):
if not any(errors):
message='''\n** Model Installation Successful **\nYou're all set! You may now launch InvokeAI using one of these two commands:
Web version:
python scripts/invoke.py --web (connect to http://localhost:9090)
Command-line version:
python scripts/invoke.py
If you installed manually, remember to activate the 'invokeai'
environment before running invoke.py. If you installed using the
automated installation script, execute "invoke.sh" (Linux/Mac) or
"invoke.bat" (Windows) to start InvokeAI.
Have fun!
'''
else:
message=f"\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
for err in errors:
message += f"\t - {err}\n"
message += "Please check the logs above and correct any issues."
print(message)
#---------------------------------------------
def yes_or_no(prompt:str, default_yes=True):
completer.set_options(['yes','no'])
completer.complete_extensions(None) # turn off path-completion mode
default = "y" if default_yes else 'n'
response = input(f'{prompt} [{default}] ') or default
if default_yes:
return response[0] not in ('n','N')
else:
return response[0] in ('y','Y')
#---------------------------------------------
def user_wants_to_download_weights()->str:
'''
Returns one of "skip", "recommended" or "customized"
'''
print('''You can download and configure the weights files manually or let this
script do it for you. Manual installation is described at:
https://github.com/invoke-ai/InvokeAI/blob/main/docs/installation/INSTALLING_MODELS.md
You may download the recommended models (about 10GB total), select a customized set, or
completely skip this step.
'''
)
completer.set_options(['recommended','customized','skip'])
completer.complete_extensions(None) # turn off path-completion mode
selection = None
while selection is None:
choice = input('Download <r>ecommended models, <a>ll models, <c>ustomized list, or <s>kip this step? [r]: ')
if choice.startswith(('r','R')) or len(choice)==0:
selection = 'recommended'
elif choice.startswith(('c','C')):
selection = 'customized'
elif choice.startswith(('a','A')):
selection = 'all'
elif choice.startswith(('s','S')):
selection = 'skip'
return selection
#---------------------------------------------
def select_datasets(action:str):
done = False
while not done:
datasets = dict()
dflt = None # the first model selected will be the default; TODO let user change
counter = 1
if action == 'customized':
print('''
Choose the weight file(s) you wish to download. Before downloading you
will be given the option to view and change your selections.
'''
)
for ds in Datasets.keys():
recommended = '(recommended)' if Datasets[ds]['recommended'] else ''
print(f'[{counter}] {ds}:\n {Datasets[ds]["description"]} {recommended}')
if yes_or_no(' Download?',default_yes=Datasets[ds]['recommended']):
datasets[ds]=counter
counter += 1
else:
for ds in Datasets.keys():
if Datasets[ds]['recommended']:
datasets[ds]=counter
counter += 1
print('The following weight files will be downloaded:')
for ds in datasets:
dflt = '*' if dflt is None else ''
print(f' [{datasets[ds]}] {ds}{dflt}')
print("*default")
ok_to_download = yes_or_no('Ok to download?')
if not ok_to_download:
if yes_or_no('Change your selection?'):
action = 'customized'
pass
else:
done = True
else:
done = True
return datasets if ok_to_download else None
#---------------------------------------------
def recommended_datasets()->dict:
datasets = dict()
for ds in Datasets.keys():
if Datasets[ds]['recommended']:
datasets[ds]=True
return datasets
#---------------------------------------------
def all_datasets()->dict:
datasets = dict()
for ds in Datasets.keys():
datasets[ds]=True
return datasets
#-------------------------------Authenticate against Hugging Face
def authenticate():
print('''
To download the Stable Diffusion weight files from the official Hugging Face
repository, you need to read and accept the CreativeML Responsible AI license.
This involves a few easy steps.
1. If you have not already done so, create an account on Hugging Face's web site
using the "Sign Up" button:
https://huggingface.co/join
You will need to verify your email address as part of the HuggingFace
registration process.
2. Log into your Hugging Face account:
https://huggingface.co/login
3. Accept the license terms located here:
https://huggingface.co/runwayml/stable-diffusion-v1-5
and here:
https://huggingface.co/runwayml/stable-diffusion-inpainting
(Yes, you have to accept two slightly different license agreements)
'''
)
input('Press <enter> when you are ready to continue:')
print('(Fetching Hugging Face token from cache...',end='')
access_token = HfFolder.get_token()
if access_token is not None:
print('found')
else:
print('not found')
print('''
4. Thank you! The last step is to enter your HuggingFace access token so that
this script is authorized to initiate the download. Go to the access tokens
page of your Hugging Face account and create a token by clicking the
"New token" button:
https://huggingface.co/settings/tokens
(You can enter anything you like in the token creation field marked "Name".
"Role" should be "read").
Now copy the token to your clipboard and paste it at the prompt. Windows
users can paste with right-click.
Token: '''
)
access_token = getpass_asterisk.getpass_asterisk()
HfFolder.save_token(access_token)
return access_token
#---------------------------------------------
# look for legacy model.ckpt in models directory and offer to
# normalize its name
def migrate_models_ckpt():
model_path = os.path.join(Globals.root,Model_dir,Weights_dir)
if not os.path.exists(os.path.join(model_path,'model.ckpt')):
return
new_name = Datasets['stable-diffusion-1.4']['file']
print('You seem to have the Stable Diffusion v4.1 "model.ckpt" already installed.')
rename = yes_or_no(f'Ok to rename it to "{new_name}" for future reference?')
if rename:
print(f'model.ckpt => {new_name}')
os.replace(os.path.join(model_path,'model.ckpt'),os.path.join(model_path,new_name))
#---------------------------------------------
def download_weight_datasets(models:dict, access_token:str):
migrate_models_ckpt()
successful = dict()
for mod in models.keys():
repo_id = Datasets[mod]['repo_id']
filename = Datasets[mod]['file']
dest = os.path.join(Globals.root,Model_dir,Weights_dir)
success = hf_download_with_resume(
repo_id=repo_id,
model_dir=dest,
model_name=filename,
access_token=access_token
)
if success:
successful[mod] = True
if len(successful) < len(models):
print(f'\n\n** There were errors downloading one or more files. **')
print('Please double-check your license agreements, and your access token.')
HfFolder.delete_token()
print('Press any key to try again. Type ^C to quit.\n')
input()
return None
HfFolder.save_token(access_token)
keys = ', '.join(successful.keys())
print(f'Successfully installed {keys}')
return successful
#---------------------------------------------
def is_huggingface_authenticated():
# huggingface_hub 0.10 API isn't great for this, it could be OSError, ValueError,
# maybe other things, not all end-user-friendly.
# noinspection PyBroadException
try:
response = hf_whoami()
if response.get('id') is not None:
return True
except Exception:
pass
return False
#---------------------------------------------
def hf_download_with_resume(repo_id:str, model_dir:str, model_name:str, access_token:str=None)->bool:
model_dest = os.path.join(model_dir, model_name)
os.makedirs(model_dir, exist_ok=True)
url = hf_hub_url(repo_id, model_name)
header = {"Authorization": f'Bearer {access_token}'} if access_token else {}
open_mode = 'wb'
exist_size = 0
if os.path.exists(model_dest):
exist_size = os.path.getsize(model_dest)
header['Range'] = f'bytes={exist_size}-'
open_mode = 'ab'
resp = requests.get(url, headers=header, stream=True)
total = int(resp.headers.get('content-length', 0))
if resp.status_code==416: # "range not satisfiable", which means nothing to return
print(f'* {model_name}: complete file found. Skipping.')
return True
elif resp.status_code != 200:
print(f'** An error occurred during downloading {model_name}: {resp.reason}')
elif exist_size > 0:
print(f'* {model_name}: partial file found. Resuming...')
else:
print(f'* {model_name}: Downloading...')
try:
if total < 2000:
print(f'*** ERROR DOWNLOADING {model_name}: {resp.text}')
return False
with open(model_dest, open_mode) as file, tqdm(
desc=model_name,
initial=exist_size,
total=total+exist_size,
unit='iB',
unit_scale=True,
unit_divisor=1000,
) as bar:
for data in resp.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)
except Exception as e:
print(f'An error occurred while downloading {model_name}: {str(e)}')
return False
return True
#---------------------------------------------
def download_with_progress_bar(model_url:str, model_dest:str, label:str='the'):
try:
print(f'Installing {label} model file {model_url}...',end='',file=sys.stderr)
if not os.path.exists(model_dest):
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
print('',file=sys.stderr)
request.urlretrieve(model_url,model_dest,ProgressBar(os.path.basename(model_dest)))
print('...downloaded successfully', file=sys.stderr)
else:
print('...exists', file=sys.stderr)
except Exception:
print('...download failed')
print(f'Error downloading {label} model')
print(traceback.format_exc())
#---------------------------------------------
def download_diffusers(models: Dict, full_precision: bool):
# This is a minimal implementation until https://github.com/invoke-ai/InvokeAI/pull/1490 lands,
# which moves a bunch of stuff.
# We can be more complete after we know it won't be all merge conflicts.
diffusers_repos = {
'CompVis/stable-diffusion-v1-4-original': 'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5': 'runwayml/stable-diffusion-v1-5',
'runwayml/stable-diffusion-inpainting': 'runwayml/stable-diffusion-inpainting',
'hakurei/waifu-diffusion-v1-3': 'hakurei/waifu-diffusion'
}
vae_repos = {
'stabilityai/sd-vae-ft-mse-original': 'stabilityai/sd-vae-ft-mse',
}
precision_args = {}
if not full_precision:
precision_args.update(revision='fp16')
for model_name, model in models.items():
repo_id = model['repo_id']
if repo_id in vae_repos:
print(f" * Downloading diffusers VAE {model_name}...")
# TODO: can we autodetect when a repo has no fp16 revision?
AutoencoderKL.from_pretrained(repo_id)
elif repo_id not in diffusers_repos:
print(f" * Downloading diffusers {model_name}...")
StableDiffusionPipeline.from_pretrained(repo_id, **precision_args)
else:
warnings.warn(f" ⚠ FIXME: add diffusers repo for {repo_id}")
continue
def download_diffusers_in_config(config_path: Path, full_precision: bool):
# This is a minimal implementation until https://github.com/invoke-ai/InvokeAI/pull/1490 lands,
# which moves a bunch of stuff.
# We can be more complete after we know it won't be all merge conflicts.
if not is_huggingface_authenticated():
print("*⚠ No Hugging Face access token; some downloads may be blocked.")
precision = 'full' if full_precision else 'float16'
cache = ModelCache(OmegaConf.load(config_path), precision=precision,
device_type='cpu', max_loaded_models=1)
for model_name in cache.list_models():
# TODO: download model without loading it.
# https://github.com/huggingface/diffusers/issues/1301
model_config = cache.config[model_name]
if model_config.get('format') == 'diffusers':
print(f" * Downloading diffusers {model_name}...")
cache.get_model(model_name)
cache.offload_model(model_name)
#---------------------------------------------
def update_config_file(successfully_downloaded:dict,opt:dict):
config_file = opt.config_file or Default_config_file
config_file = os.path.normpath(os.path.join(Globals.root,config_file))
yaml = new_config_file_contents(successfully_downloaded,config_file)
try:
if os.path.exists(config_file):
print(f'** {config_file} exists. Renaming to {config_file}.orig')
os.replace(config_file,f'{config_file}.orig')
tmpfile = os.path.join(os.path.dirname(config_file),'new_config.tmp')
with open(tmpfile, 'w') as outfile:
outfile.write(Config_preamble)
outfile.write(yaml)
os.replace(tmpfile,config_file)
except Exception as e:
print(f'**Error creating config file {config_file}: {str(e)} **')
return
print(f'Successfully created new configuration file {config_file}')
#---------------------------------------------
def new_config_file_contents(successfully_downloaded:dict, config_file:str)->str:
if os.path.exists(config_file):
conf = OmegaConf.load(config_file)
else:
conf = OmegaConf.create()
# find the VAE file, if there is one
vaes = {}
default_selected = False
for model in successfully_downloaded:
a = Datasets[model]['config'].split('/')
if a[0] != 'VAE':
continue
vae_target = a[1] if len(a)>1 else 'default'
vaes[vae_target] = Datasets[model]['file']
for model in successfully_downloaded:
if Datasets[model]['config'].startswith('VAE'): # skip VAE entries
continue
stanza = conf[model] if model in conf else { }
stanza['description'] = Datasets[model]['description']
stanza['weights'] = os.path.join(Model_dir,Weights_dir,Datasets[model]['file'])
stanza['config'] = os.path.normpath(os.path.join(SD_Configs, Datasets[model]['config']))
stanza['width'] = Datasets[model]['width']
stanza['height'] = Datasets[model]['height']
stanza.pop('default',None) # this will be set later
if vaes:
for target in vaes:
if re.search(target, model, flags=re.IGNORECASE):
stanza['vae'] = os.path.normpath(os.path.join(Model_dir,Weights_dir,vaes[target]))
else:
stanza['vae'] = os.path.normpath(os.path.join(Model_dir,Weights_dir,vaes['default']))
# BUG - the first stanza is always the default. User should select.
if not default_selected:
stanza['default'] = True
default_selected = True
conf[model] = stanza
return OmegaConf.to_yaml(conf)
#---------------------------------------------
# this will preload the Bert tokenizer fles
def download_bert():
print('Installing bert tokenizer (ignore deprecation errors)...', end='',file=sys.stderr)
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
from transformers import BertTokenizerFast
download_from_hf(BertTokenizerFast,'bert-base-uncased')
print('...success',file=sys.stderr)
#---------------------------------------------
def download_from_hf(model_class:object, model_name:str):
print('',file=sys.stderr) # to prevent tqdm from overwriting
return model_class.from_pretrained(model_name,
cache_dir=os.path.join(Globals.root,Model_dir,model_name),
resume_download=True
)
#---------------------------------------------
def download_clip():
print('Installing CLIP model (ignore deprecation errors)...',file=sys.stderr)
version = 'openai/clip-vit-large-patch14'
print('Tokenizer...',file=sys.stderr, end='')
download_from_hf(CLIPTokenizer,version)
print('Text model...',file=sys.stderr, end='')
download_from_hf(CLIPTextModel,version)
print('...success',file=sys.stderr)
#---------------------------------------------
def download_realesrgan():
print('Installing models from RealESRGAN...',file=sys.stderr)
model_url = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
model_dest = os.path.join(Globals.root,'models/realesrgan/realesr-general-x4v3.pth')
download_with_progress_bar(model_url, model_dest, 'RealESRGAN')
def download_gfpgan():
print('Installing GFPGAN models...',file=sys.stderr)
for model in (
[
'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
'./models/gfpgan/GFPGANv1.4.pth'
],
[
'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth',
'./models/gfpgan/weights/detection_Resnet50_Final.pth'
],
[
'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth',
'./models/gfpgan/weights/parsing_parsenet.pth'
],
):
model_url,model_dest = model[0],os.path.join(Globals.root,model[1])
download_with_progress_bar(model_url, model_dest, 'GFPGAN weights')
#---------------------------------------------
def download_codeformer():
print('Installing CodeFormer model file...',file=sys.stderr)
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
model_dest = os.path.join(Globals.root,'models/codeformer/codeformer.pth')
download_with_progress_bar(model_url, model_dest, 'CodeFormer')
#---------------------------------------------
def download_clipseg():
print('Installing clipseg model for text-based masking...',end='', file=sys.stderr)
import zipfile
try:
model_url = 'https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download'
model_dest = os.path.join(Globals.root,'models/clipseg/clipseg_weights')
weights_zip = 'models/clipseg/weights.zip'
if not os.path.exists(model_dest):
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
if not os.path.exists(f'{model_dest}/rd64-uni-refined.pth'):
dest = os.path.join(Globals.root,weights_zip)
request.urlretrieve(model_url,dest)
with zipfile.ZipFile(dest,'r') as zip:
zip.extractall(os.path.join(Globals.root,'models/clipseg'))
os.remove(dest)
from clipseg.clipseg import CLIPDensePredT
model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, )
model.eval()
model.load_state_dict(
torch.load(
os.path.join(Globals.root,'models/clipseg/clipseg_weights/rd64-uni-refined.pth'),
map_location=torch.device('cpu')
),
strict=False,
)
except Exception:
print('Error installing clipseg model:')
print(traceback.format_exc())
print('...success',file=sys.stderr)
#-------------------------------------
def download_safety_checker():
print('Installing model for NSFW content detection...',file=sys.stderr)
try:
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
except ModuleNotFoundError:
print('Error installing NSFW checker model:')
print(traceback.format_exc())
return
safety_model_id = "CompVis/stable-diffusion-safety-checker"
print('AutoFeatureExtractor...', end='',file=sys.stderr)
download_from_hf(AutoFeatureExtractor,safety_model_id)
print('StableDiffusionSafetyChecker...', end='',file=sys.stderr)
download_from_hf(StableDiffusionSafetyChecker,safety_model_id)
print('...success',file=sys.stderr)
#-------------------------------------
def download_weights(opt:dict) -> Union[str, None]:
# Authenticate to Huggingface using environment variables.
# If successful, authentication will persist for either interactive or non-interactive use.
# Default env var expected by HuggingFace is HUGGING_FACE_HUB_TOKEN.
if not (access_token := HfFolder.get_token()):
# If unable to find an existing token or expected environment, try the non-canonical environment variable (widely used in the community and supported as per docs)
if (access_token := os.getenv("HUGGINGFACE_TOKEN")):
# set the environment variable here instead of simply calling huggingface_hub.login(token), to maintain consistent behaviour.
# when calling the .login() method, the token is cached in the user's home directory. When the env var is used, the token is NOT cached.
os.environ['HUGGING_FACE_HUB_TOKEN'] = access_token
if opt.yes_to_all:
models = recommended_datasets()
if len(models)>0 and access_token is not None:
successfully_downloaded = download_weight_datasets(models, access_token)
update_config_file(successfully_downloaded,opt)
return
else:
print('** Cannot download models because no Hugging Face access token could be found. Please re-run without --yes')
return "could not download model weights from Huggingface due to missing or invalid access token"
else:
choice = user_wants_to_download_weights()
if choice == 'recommended':
models = recommended_datasets()
elif choice == 'all':
models = all_datasets()
elif choice == 'customized':
models = select_datasets(choice)
if models is None and yes_or_no('Quit?',default_yes=False):
sys.exit(0)
else: # 'skip'
return
print('** LICENSE AGREEMENT FOR WEIGHT FILES **')
# We are either already authenticated, or will be asked to provide the token interactively
access_token = authenticate()
print('\n** DOWNLOADING WEIGHTS **')
successfully_downloaded = download_weight_datasets(models, access_token)
update_config_file(successfully_downloaded,opt)
if len(successfully_downloaded) < len(models):
return "some of the model weights downloads were not successful"
#-------------------------------------
def get_root(root:str=None)->str:
if root:
return root
elif os.environ.get('INVOKEAI_ROOT'):
return os.environ.get('INVOKEAI_ROOT')
else:
init_file = os.path.expanduser(Globals.initfile)
if not os.path.exists(init_file):
return None
# if we get here, then we read from initfile
root = None
with open(init_file, 'r') as infile:
lines = infile.readlines()
for l in lines:
if re.search('\s*#',l): # ignore comments
continue
match = re.search('--root\s*=?\s*"?([^"]+)"?',l)
if match:
root = match.groups()[0]
root = root.strip()
return root
#-------------------------------------
def select_root(root:str, yes_to_all:bool=False):
default = root or os.path.expanduser('~/invokeai')
if (yes_to_all):
return default
completer.set_default_dir(default)
completer.complete_extensions(())
completer.set_line(default)
directory = input(f"Select a directory in which to install InvokeAI's models and configuration files [{default}]: ").strip(' \\')
return directory or default
#-------------------------------------
def select_outputs(root:str,yes_to_all:bool=False):
default = os.path.normpath(os.path.join(root,'outputs'))
if (yes_to_all):
return default
completer.set_default_dir(os.path.expanduser('~'))
completer.complete_extensions(())
completer.set_line(default)
directory = input(f'Select the default directory for image outputs [{default}]: ').strip(' \\')
return directory or default
#-------------------------------------
def initialize_rootdir(root:str,yes_to_all:bool=False):
assert os.path.exists('./configs'),'Run this script from within the InvokeAI source code directory, "InvokeAI" or the runtime directory "invokeai".'
print(f'** INITIALIZING INVOKEAI RUNTIME DIRECTORY **')
root_selected = False
while not root_selected:
root = select_root(root,yes_to_all)
outputs = select_outputs(root,yes_to_all)
Globals.root = os.path.abspath(root)
outputs = outputs if os.path.isabs(outputs) else os.path.abspath(os.path.join(Globals.root,outputs))
print(f'\nInvokeAI models and configuration files will be placed into "{root}" and image outputs will be placed into "{outputs}".')
if not yes_to_all:
root_selected = yes_or_no('Accept these locations?')
else:
root_selected = True
print(f'\nYou may change the chosen directories at any time by editing the --root and --outdir options in "{Globals.initfile}",')
print(f'You may also change the runtime directory by setting the environment variable INVOKEAI_ROOT.\n')
enable_safety_checker = True
default_sampler = 'k_heun'
default_steps = '20' # deliberately a string - see test below
sampler_choices =['ddim','k_dpm_2_a','k_dpm_2','k_euler_a','k_euler','k_heun','k_lms','plms']
if not yes_to_all:
print('The NSFW (not safe for work) checker blurs out images that potentially contain sexual imagery.')
print('It can be selectively enabled at run time with --nsfw_checker, and disabled with --no-nsfw_checker.')
print('The following option will set whether the checker is enabled by default. Like other options, you can')
print(f'change this setting later by editing the file {Globals.initfile}.')
enable_safety_checker = yes_or_no('Enable the NSFW checker by default?',enable_safety_checker)
print('\nThe next choice selects the sampler to use by default. Samplers have different speed/performance')
print('tradeoffs. If you are not sure what to select, accept the default.')
sampler = None
while sampler not in sampler_choices:
sampler = input(f'Default sampler to use? ({", ".join(sampler_choices)}) [{default_sampler}]:') or default_sampler
print('\nThe number of denoising steps affects both the speed and quality of the images generated.')
print('Higher steps often (but not always) increases the quality of the image, but increases image')
print('generation time. This can be changed at run time. Accept the default if you are unsure.')
steps = ''
while not steps.isnumeric():
steps = input(f'Default number of steps to use during generation? [{default_steps}]:') or default_steps
else:
sampler = default_sampler
steps = default_steps
safety_checker = '--nsfw_checker' if enable_safety_checker else '--no-nsfw_checker'
for name in ('models','configs','embeddings'):
os.makedirs(os.path.join(root,name), exist_ok=True)
for src in (['configs']):
dest = os.path.join(root,src)
if not os.path.samefile(src,dest):
shutil.copytree(src,dest,dirs_exist_ok=True)
os.makedirs(outputs, exist_ok=True)
init_file = os.path.expanduser(Globals.initfile)
print(f'Creating the initialization file at "{init_file}".\n')
with open(init_file,'w') as f:
f.write(f'''# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running configure_invokeai.py again.
# The --root option below points to the folder in which InvokeAI stores its models, configs and outputs.
--root="{Globals.root}"
# the --outdir option controls the default location of image files.
--outdir="{outputs}"
# generation arguments
{safety_checker}
--sampler={sampler}
--steps={steps}
# You may place other frequently-used startup commands here, one or more per line.
# Examples:
# --web --host=0.0.0.0
# --steps=20
# -Ak_euler_a -C10.0
#
''')
#-------------------------------------
class ProgressBar():
def __init__(self,model_name='file'):
self.pbar = None
self.name = model_name
def __call__(self, block_num, block_size, total_size):
if not self.pbar:
self.pbar=tqdm(desc=self.name,
initial=0,
unit='iB',
unit_scale=True,
unit_divisor=1000,
total=total_size)
self.pbar.update(block_size)
#-------------------------------------
def main():
parser = argparse.ArgumentParser(description='InvokeAI model downloader')
parser.add_argument('--interactive',
dest='interactive',
action=argparse.BooleanOptionalAction,
default=True,
help='run in interactive mode (default)')
parser.add_argument('--full-precision',
dest='full_precision',
action=argparse.BooleanOptionalAction,
type=bool,
default=False,
help='use 32-bit weights instead of faster 16-bit weights')
parser.add_argument('--yes','-y',
dest='yes_to_all',
action='store_true',
help='answer "yes" to all prompts')
parser.add_argument('--config_file',
'-c',
dest='config_file',
type=str,
default='./configs/models.yaml',
help='path to configuration file to create')
parser.add_argument('--root',
dest='root',
type=str,
default=None,
help='path to root of install directory')
opt = parser.parse_args()
# setting a global here
Globals.root = os.path.expanduser(get_root(opt.root) or '')
try:
introduction()
# We check for to see if the runtime directory is correctly initialized.
if Globals.root == '' \
or not os.path.exists(os.path.join(Globals.root,'configs/stable-diffusion/v1-inference.yaml')):
initialize_rootdir(Globals.root,opt.yes_to_all)
# Optimistically try to download all required assets. If any errors occur, add them and proceed anyway.
errors=set()
if opt.interactive:
print('** DOWNLOADING DIFFUSION WEIGHTS **')
errors.add(download_weights(opt))
else:
config_path = Path(Globals.root, opt.config_file or Default_config_file)
if config_path.exists():
download_diffusers_in_config(config_path, full_precision=opt.full_precision)
else:
print(f"*⚠ No config file found; downloading no weights. Looked in {config_path}")
print('\n** DOWNLOADING SUPPORT MODELS **')
download_bert()
download_clip()
download_realesrgan()
download_gfpgan()
download_codeformer()
download_clipseg()
download_safety_checker()
postscript(errors=errors)
except KeyboardInterrupt:
print('\nGoodbye! Come back soon.')
except Exception as e:
print(f'\nA problem occurred during initialization.\nThe error was: "{str(e)}"')
print(traceback.format_exc())
#-------------------------------------
if __name__ == '__main__':
main()